Turgor-Volume Regulation and Cellular Water Relations of Nicotiana tabacum Roots Grown in High Salinities

1989 ◽  
Vol 16 (6) ◽  
pp. 517 ◽  
Author(s):  
SD Tyerman ◽  
P Oats ◽  
J Gibbs ◽  
M Dracup ◽  
H Greenway

Nicotiana tabacum plants were grown in solution culture with salinity treatments of 1, 100 and 200 mol m-3 [NaCl], in Hoagland solution. After several weeks, solute concentrations and osmotic pressure of cell sap from the roots were measured. Increases in cellular [Na+] and [Cl-] and a smaller reduction in [K+] accounted for the difference in sap osmotic pressure between the 200 mol m-3 and 1 mol m-3 treatments. Turgor pressure (P) of fully expanded cortex cells measured with the pressure probe were 0.48 MPa in 1 mol m-3, 0.24 MPa in 100 mol m-3, 0.20 MPa in 200 mol m-3, and these values agreed with those calculated by difference between internal and external osmotic pressure. Low values of volumetric elastic modulus (ε), ranging from 1.2 MPa to 3.0 MPa at P = 0.42 MPa were obtained, which accounted for long equilibration times to changes in water potential. There was no effect of high salinities on ε after accounting for the fact that ε was a function of P and neither was there an effect on hydraulic conductivity (Lp), which ranged between 1.9 × 10-8 and 24.1 × 10-8 m s-1 Mpa-1. At 200 mol m-3 [NaCl]o, and to a lesser degree at 100 mol m-3 [NaCl]o, root hairs became deformed to resemble spherical bladders (mean diameter = 88 �m) which displayed similar P and water relations to other epidermal cells and cortex cells. In other experiments the response to a sudden reduction in [NaCl], from 200 to 1 mol m-3 was studied. P of cortex cells first rapidly increased from about 0.15 MPa to 0.53 MPa and then slowly declined with a half time of about 35 min to a new steady state of 0.3 MPa. This level was maintained in intact roots for at least 48 h. The rate of the initial increase in P is limited by water flow into the cells while the slow decline is limited by solute efflux from the cells with water following osmotically. The efflux was mainly in response to reduced external osmotic pressure rather than [NaCl]o. Efflux of Na+, K+ and Cl- accounted for the decrease in internal osmotic pressure but it is possible that the membrane also became more permeable to sugars. With the exception of bladder hairs, the overall integrity of the cell membrane was maintained since Lp did not increase and P declined smoothly to the new level with no evidence of rupture and resealing of the membrane. It is argued that the loss of solutes after the step down in external osmotic pressure consists of turgor or volume regulation in which solute permeability increases steeply as turgor or volume goes above a threshold.

1978 ◽  
Vol 56 (17) ◽  
pp. 2153-2161 ◽  
Author(s):  
M. T. Tyree ◽  
M. E. MacGregor ◽  
A. Petrov ◽  
M. I. Upenieks

The pressure bomb is being used to a much greater extent to measure some tissue – water relations parameters such as osmotic pressure, turgor pressure, and cell wall elasticity. Recently, Richards has developed a faster pressure-bomb method of obtaining these and other parameters than the method used by Hammel and modified by us. In this paper, we compare the two methods and conclude that Richards’ method should not be used when accuracy is deemed important. The Richards method usually overestimates osmotic pressure by 0.2 MPa (= 2 bars) and sometimes by 0.8 MPa (= 8 bars).


1974 ◽  
Vol 52 (5) ◽  
pp. 973-978 ◽  
Author(s):  
M. T. Tyree ◽  
J. Dainty ◽  
D. M. Hunter

The temperature dependence of the balance pressure is reported for shoots of Tsuga canadensis at constant volume, i.e., when water is neither added to nor removed from the shoot. Since the balance pressure closely equals minus the water potential, the temperature dependence of the balance pressure should reflect the combined temperature dependence of the osmotic and turgor pressures. Both the osmotic and the turgor pressures decline with decreasing temperature; frequently the turgor pressure declines 2 to 3 times more rapidly than the osmotic pressure, causing the balance pressure to rise with decreasing temperature. Only when the turgor pressure is zero (only beyond incipient plasmolysis) does the temperature dependence of the balance pressure closely follow the temperature dependence of the osmotic pressure; this occurs when the balance pressure equals or exceeds 24 bars.


1982 ◽  
Vol 9 (4) ◽  
pp. 461 ◽  
Author(s):  
SD Tyerman ◽  
E Steudle

Hydraulic conductivity (Lp), volumetric elastic modulus (ε) and reflection coefficients (δ) have been determined for cells from isolated strips of the lower epidermis of leaves of Tradescantia virginiana using the pressure probe. Lp was (6.4 � 4.5) × 10-8 ms-1 Mpa-1 [(6.4 � 4.5) × 10-7 cm s-1 bar-1; mean � s.d., n = 15 cells] and was independent of the cell turgor pressure (P) and of osmotic pressure of the bathing medium. P in Johnson's solution (π° = 0.09 MPa) was 0.42-0.67 MPa (4.2-6.7 bar), which was somewhat larger than in the intact tissue. ε increased linearly with increasing P in the pressure range from zero to full turgor. Reflection coefficients of some non-electrolytes were determined by measuring the ΔP in response to a change in external osmotic pressure (Δπ°) after the addition of the solutes. The data were corrected for solute flow. For sucrose, mannitol, urea, acetamide, formamide, glycerol and ethylene glycol, δ was close to unity and the cells behaved like ideal osmometers. For the monohydroxyalcohols n-propanol ( δ = -0.58), isopropanol (δ = 0.26), ethanol (δ = 0.25) and methanol (δ = 0.15), rather low reflection coefficients were found which were even negative for some solutes and cells. Values of δ obtained from measuring the inital water (volume) flow were in agreement with those determined from the ΔP/Δπ° ratios. For the rapidly permeating substances, the changes in turgor after the addition of solute were transient and the equilibration of solutes between cell and medium could be measured using the probe. Although unstirred layers may affect the equilibration of solute it should, in principle, be possible to use the technique for the determination of permeability coefficients of membranes of higher plant cells.


2021 ◽  
Vol 254 ◽  
pp. 106942
Author(s):  
Gokhan Camoglu ◽  
Kursad Demirel ◽  
Fatih Kahriman ◽  
Arda Akcal ◽  
Hakan Nar ◽  
...  

2007 ◽  
Vol 7 (2) ◽  
pp. 302-309 ◽  
Author(s):  
Chengshu Wang ◽  
Zhibing Duan ◽  
Raymond J. St. Leger

ABSTRACT Entomopathogenic fungi such as Metarhizium anisopliae infect insects by direct penetration of the cuticle, after which the fungus adapts to the high osmotic pressure of the hemolymph and multiplies. Here we characterize the M. anisopliae Mos1 gene and demonstrate that it encodes the osmosensor required for this process. MOS1 contains transmembrane regions and a C-terminal Src homology 3 domain similar to those of yeast osmotic adaptor proteins, and homologs of MOS1 are widely distributed in the fungal kingdom. Reverse transcription-PCR demonstrated that Mos1 is up-regulated in insect hemolymph as well as artificial media with high osmotic pressure. Transformants containing an antisense vector directed to the Mos1 mRNA depleted transcript levels by 80%. This produced selective alterations in regulation of genes involved in hyphal body formation, cell membrane stiffness, and generation of intracellular turgor pressure, suggesting that these processes are mediated by MOS1. Consistent with a role in stress responses, transcript depletion of Mos1 increased sensitivity to osmotic and oxidative stresses and to compounds that interfere with cell wall biosynthesis. It also disrupted developmental processes, including formation of appressoria and hyphal bodies. Insect bioassays confirmed that Mos1 knockdown significantly reduces virulence. Overall, our data show that M. anisopliae MOS1 mediates cellular responses to high osmotic pressure and subsequent adaptations to colonize host hemolymph.


1965 ◽  
Vol 11 (3) ◽  
pp. 531-538 ◽  
Author(s):  
J. S. Jhooty ◽  
W. E. McKeen

The conidia of Sphaerotheca macularis germinate best at a relative humidity (R.H.) of 99 and 100% on glass surfaces, and germination does not occur if the R.H. is below 93%. Conidia of Erysiphe polygoni DC. germinate at 3% R.H. The water content of conidia of S. macularis and E. polygoni is 53 and 69% respectively. The osmotic pressure of S. macularis conidia is about 18 atm and their density varies from 1.10 to 1.11 g/ml. There is no significant change in the diameter and length of the conidia during germination.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Jincai Su ◽  
Yanyan Wei ◽  
Hui Li

In this study, robust and defect-free thin film composite (TFC) forward osmosis (FO) membranes have been successfully fabricated using ceramic hollow fibers as the substrate. Polydopamine (PDA) coating under controlled conditions is effective to reduce the surface pores of the substrate and make the substrate smooth enough for the interfacial polymerization. The pure water permeability (A), solute permeability (B) and structural parameter (S) of the resultant FO membrane are 0.854 L·m-2h-1bar-1 (LMH/Bar) 0.186 L·m-2h-1 (LMH) and 1720 µm, respectively. The water flux and reverse draw solute flux are measured using NaCl and proprietary ferric sodium citrate (FeNaCA) draw solutions at low and high osmotic pressure ranges. With increasing the osmotic pressure, higher water flux is obtained but its increase is not directly proportional to the increase in the osmotic pressure. At the membrane surface, the effect of dilutive concentration polarization is much less serious for FeNaCA draw solutions. At an osmotic pressure of 89.6 bar, the developed TFC membrane generates water fluxes of 11.5 and 30.0 LMH using NaCl and synthesized FeNaCA draw solutions. The corresponding reverse draw solute flux is 7.0 g·m-2h-1 (gMH) for NaCl draw solution but it is not detectable for FeNaCA draw solution. This means that the developed TFC FO membranes are defect free and their surface pores are at molecular level. The performance of the developed TFC FO membranes are also demonstrated for the enrichment of BSA protein.


Author(s):  
G Angelino ◽  
S Ascione ◽  
C Ruggiero

AbstractWe have investigated the effects of saline irrigation on growth and water relations of two sun-cured tobacco genotypes, Xp102 and Px107, which belong to the Xanthia and Perustitza tobacco ecotypes, respectively. We compared three commercial sea salt concentrations of the irrigation water (0.25%, 0.5%, and 1% w/v) plus a non-salinized control, corresponding to an electrical conductivity (ECw) of 4.4, 8.5, 15.7, 0.5 dS m-1 and osmotic potentials of -0.22, -0.35, -0.73, -0.02 MPa, respectively. The ECsoil increased with the salinity of the irrigation water. At high salinity (1%), the soil where Px107 plants were grown showed a significantly higher salinity compared to the soil of Xp102. For both genotypes, the soil water content increased at increasing salinity and during the growth season. Increasing salinity progressively reduced the leaf turgor pressure and enhanced the cellular osmotic adjustment. The latter resulted to be more pronounced in Px107 compared to Xp102 (0.36 vs. 0.20 MPa). At higher salinity (0.5% and 1%), both genotypes showed reduced leaf surface area, dry matter accumulation, water use, net assimilation rate (NAR) and crop growth rate (CGR). Px107 roots were more sensitive than shoot to salinity (3% reduction per dS m-1) and compared to Xp102 roots, which showed a reduced development only at 1% salinity. Assessment of plant salt tolerance according to the Maas and Hoffman model revealed a slope of 1-2% for both genotypes, indicating that these tobaccos are relatively more salt tolerant compared to other species.


1990 ◽  
Vol 17 (1) ◽  
pp. 49 ◽  
Author(s):  
BJ Atwell ◽  
JC Newsome

Seedlings of lupin (Lupinus angustifolius cv. 75A-258) were grown in cores of sandy loam which was compacted to bulk densities of 1.6 and 1.8 Mg m-3 . There was a substantial decrease in root elongation rate at the higher bulk density. After 4-7 d, roots were rinsed free of soil and clamped loosely in a Perspex block for measurement of turgor pressure (P) using a pressure probe. Measurements were made at 3-4 positions on each root, each estimation taking 2 min. Turgor pressures in the terminal 15 mm of the axes ranged between 0.213 and 0.530 at 1.6 Mg m-3 and 0.210 and 0.570 MPa at 1.8 Mg m-3; mean P values were 0.365 and 0.351 MPa in roots growing at 1.6 and 1.8 Mg m-3, respectively. These measurements were made on roots removed from the soil; P could have been greater in roots still growing in compact soil. Anatomical studies showed that the distal boundary of the zone of cell expansion was 2-4 mm nearer the apex in roots growing at 1.8 than at 1.6 Mg m-3. Using this information, we showed that the mean P of expanding tissue was the same in roots of the two treatments. The apparent rise in P near the apex of roots at 1.8 Mg m-3 was not statistically significant. Primary roots growing against high mechanical impedance had a 34% lower rate of elongation and a 22% greater diameter, resulting in nearly identical rates of volume expansion (35.1 and 34.9 mm3 d-1 at 1.6 and 1.8 Mg m-3 respectively). Furthermore, the rate of O2 uptake was the same in 10 mm root apices from both treatments so that there was no evidence that the carbohydrate requirement for respiration was enhanced by high soil strength. Moreover, while mechanical impedance decreased root elongation, it did not significantly affect our estimate of P. We believe that P in lupin roots changes in response to mechanical impedance only when volume expansion or utilization of solutes are affected.


Physiology ◽  
1990 ◽  
Vol 5 (3) ◽  
pp. 112-119 ◽  
Author(s):  
SA Lewis ◽  
P Donaldson

Exposure of many vertebrate cells to solutions more dilute or concentrated than the physiological "norm" results in an initial increase or decrease in cell volume followed by a recovery of volume toward a normal value. Although the basic strategy for volume regulation is the same for cell types studied, the mechanism by which the cell regulates ion channels appears to be tissue dependent.


Sign in / Sign up

Export Citation Format

Share Document