Inhibition of CO2 Assimilation by Supraoptimal CO2: Effect of Light and Temperature

1983 ◽  
Vol 10 (1) ◽  
pp. 75 ◽  
Author(s):  
KC Woo ◽  
SC Wong

In cotton the rate of CO2 assimilation, at O2 partial pressures up to 200 mbar, increased to a maximum and then declined as the intercellular partial pressure of CO2 was increased. The specific intercellular partial pressure of CO2 at which rate of assimilation began to decline depended on the environmental conditions. At 19 mbar partial pressure of O2 the decline occurred at CO2 partial pressure >390 �bar. At 200 mbar partial pressure of O2 it occurred at CO2 partial pressure > 534 �bar. O2 increased the CO2 partial pressure required for inhibition but it did not appear to affect the steepness of the decline of rate of assimilation with further increase in partial pressure of CO2 once the decline became apparent. The decline was more readily observed at low temperature and low O2 partial pressure, and in plants grown at low light and NO3- levels. It was also observed in cowpea and sunflower. Changes in quantum efficiency in cotton at high and low CO2 concentrations were observed. At ambient CO2 concentration (300 �bar), the quantum yields measured at 19 and 200 mbar partial pressure of O2 were 0.072 � 0.0003 and 0.053 � 0.0060 mol CO2 per mol absorbed quanta, respectively. In contrast, at 900 �bar CO2 partial pressure the respective values were 0.050 � 0.0023 and 0.070 � 0.0006 mol CO2 per mol absorbed quanta. The nature of the inhibition of CO2 assimilation by high partial pressure of CO2 is discussed.

1980 ◽  
Vol 7 (6) ◽  
pp. 737 ◽  
Author(s):  
SB Powles ◽  
KSR Chapman ◽  
CB Osmond

Fully expanded intact attached leaves of Zea mays and other C4 plants illuminated at 2000 �E m-2 s-1 in CO2-free N2 containing 10 mbar O2 for a 3-h treatment period showed substantial inhibition of the capacity for both CO2-dependent and light-dependent CO2 assimilation. This photoinhibition was reflected at the chloroplast level as substantial inhibition of photosystem II activity of the mesophyll chloroplasts. Photoinhibition was largely insensitive to the O2 partial pressure maintained throughout the treatment period. This result suggests that internal CO2 generation by photorespiration with subsequent carbon cycling, or O2 uptake in a Mehler-type reaction are largely unable to alleviate photoinhibition. The extent of photoinhibition was, however, markedly affected by the CO2 partial pressure present throughout the treatment period. This result is consistent with the CO2-concentrating function of C4 photosynthesis, which allows substantial rates of CO2 assimilation even at low mesophyll CO2 partial pressures. Apparently, a certain level of CO2 turn- over is beneficial in providing a sink for photochemically generated energy, thereby maintaining the ability of illuminated leaves to transduce and dissipate light energy.


1981 ◽  
Vol 51 (1) ◽  
pp. 55-61 ◽  
Author(s):  
S. Lahiri ◽  
A. Mokashi ◽  
E. Mulligan ◽  
T. Nishino

A quantitative comparison of the responses between aortic and carotid chemoreceptors to steady-state levels of arterial CO2 and O2 partial pressure was made in 35 cats anesthetized, paralyzed, and artificially ventilated. The measurements on the two receptors were made simultaneously in 6 cats and separately in 29 cats. The response of aortic chemoreceptors to a CO2 stimulus was a fraction of that of carotid chemoreceptors, and the response to hypoxia was relatively blunted. The differences between the two chemoreceptors are quantitative rather than qualitative. Since a low arterial CO2 partial pressure stimulus is known to attenuate the hypoxic response of carotid chemoreceptors, it is suggested that the low CO2 response of aortic body chemoreceptors is responsible for their blunted hypoxic response.


1982 ◽  
Vol 242 (3) ◽  
pp. C200-C206 ◽  
Author(s):  
E. Mulligan ◽  
S. Lahiri

The cat carotid chemoreceptor O2 and CO2 responses can be separated by oligomycin and by antimycin A. Both of these agents greatly diminish or abolish the chemoreceptor O2 response but not the nicotine or CO2 responses. After either oligomycin or antimycin, the responses to increases and decreases in arterial CO2 partial pressure (PaCO2) consisted of increases and decreases in activity characterized respectively by exaggerated overshoots and undershoots. These were eliminated by the carbonic anhydrase inhibitor, acetazolamide, suggesting that they resulted from changes in carotid body tissue pH. The steady-state PaCO2 response remaining after oligomycin was no longer dependent on arterial O2 partial pressure (PaO2). All effects of antimycin were readily reversible in about 20 min. The separation of the responses to O2 and CO2 indicates that there may be at least partially separate pathways of chemoreception for these two stimuli. The similarity of the oligomycin and antimycin results supports the metabolic hypothesis of chemoreception.


1987 ◽  
Vol 253 (4) ◽  
pp. H890-H897 ◽  
Author(s):  
R. W. McPherson ◽  
D. Eimerl ◽  
R. J. Traystman

The interaction of hypoxic hypoxia, hypercapnia, and mean arterial blood pressure (MABP) was studied in 15 pentobarbital-anesthetized ventilated dogs. In one group of animals (n = 5) hypercapnia [arterial CO2 partial pressure (PaCO2) approximately 50 Torr] was added to both moderate hypoxia and severe hypoxia. Moderate hypoxia [arterial O2 partial pressure (PaO2) = 36 mmHg] increased MABP and cerebral blood flow (CBF) without changes in cerebral O2 uptake (CMRO2). Superimposed hypercapnia increased CBF and MABP further with no change in CMRO2. In another group of animals (n = 5), a MABP increase of approximately 40 mmHg during moderate hypoxia without hypercapnia did not further increase CBF, suggesting intact autoregulation. Thus, during moderate hypoxia, hypercapnia is capable of increasing CBF. Severe hypoxia (PaO2 = 22 mmHg) increased CBF, but MABP and CMRO2 declined. Superimposed hypercapnia further decreased MABP and decreased CBF from its elevated level and further decreased CMRO2. Raising MABP under these circumstances in another animal group (n = 5) increased CBF above the level present during severe hypoxia alone and increased CMRO2. The change in CBF and CMRO2 during severe hypoxia plus hypercapnia with MABP elevation were not different from that severe hypoxia alone. We conclude that, during hypoxia sufficiently severe to impair CMRO2, superimposed hypercapnia has a detrimental influence due to decreased MABP, which causes a decrease in CBF and cerebral O2 delivery.


1983 ◽  
Vol 55 (3) ◽  
pp. 688-698 ◽  
Author(s):  
J. B. West ◽  
S. J. Boyer ◽  
D. J. Graber ◽  
P. H. Hackett ◽  
K. H. Maret ◽  
...  

Maximal exercise at extreme altitudes was studied during the course of the American Medical Research Expedition to Everest. Measurements were carried out at sea level [inspired O2 partial pressure (PO2) 147 Torr], 6,300 m during air breathing (inspired PO2 64 Torr), 6,300 m during 16% O2 breathing (inspired PO2 49 Torr), and 6,300 m during 14% O2 breathing (inspired PO2 43 Torr). The last PO2 is equivalent to that on the summit of Mt. Everest. All the 6,300 m studies were carried out in a warm well-equipped laboratory on well-acclimatized subjects. Maximal O2 uptake fell dramatically as the inspired PO2 was reduced to very low levels. However, two subjects were able to reach an O2 uptake of 1 l/min at the lowest inspired PO2. Arterial O2 saturations fell markedly and alveolar-arterial PO2 differences increased as the work rate was raised at high altitude, indicating diffusion limitation of O2 transfer. Maximal exercise ventilations exceeded 200 l/min at 6,300 m during air breathing but fell considerably at the lowest values of inspired PO2. Alveolar CO2 partial pressure was reduced to 7-8 Torr in one subject at the lowest inspired PO2, and the same value was obtained from alveolar gas samples taken by him at rest on the summit. The results help to explain how man can reach the highest point on earth while breathing ambient air.


1996 ◽  
Vol 23 (5) ◽  
pp. 623 ◽  
Author(s):  
KP Hogan ◽  
D Whitehead ◽  
J Kallarackal ◽  
JG Buwalda ◽  
J Meekings ◽  
...  

Radiata pine (Pinus radiata D.Don) and red beech (Nothofagus fusca (Hook. f.) Oerst.) were grown for over 1 year at elevated (ELEV, 64 Pa) and ambient (AMB, 38 Pa) CO2 partial pressure in open-top chambers. Springtime measurements of overwintering leaves showed that light- and CO2-saturated photosynthetic rates (Amax) of pine leaves were similar for the two treatments (AMB: 6.7 � 1.08 μmol m-2 s-1, mean � 1 s.e.; ELEV: 6.6 � 0.47) but, for beech leaves, Amax was greater for AMB plants (8.8 � 0.90 μmol m-2 s-1) than for ELEV plants (6.10 � 0.71). Summertime measurements of leaves grown that spring showed that for pine, Amax was similar in the two CO2 treatments (AMB 14.9 μmol m-2 s-1 � 0.80; ELEV: 13.5 � 1.9) while, for beech, Amax was higher in AMB plants (21.0 � 1.1) than in ELEV plants (17.2 � 1.9), although the difference was not statistically significant. These results indicate downregulation of photosynthetic capacity of beech but not pine. Vcmax did not differ between treatments within species, suggesting that there was no acclimation of rubisco activity. Triose phosphate utilisation limitation may have contributed to the downregulation of Amax in beech. For pine, photosynthesis at treatment CO2 partial pressures was greater in ELEV plants in both spring and summer. For beech measured at treatment CO2 partial pressures, photosynthesis was greater in ELEV plants in summer, but was similar between treatments in the springtime.


2019 ◽  
Vol 71 (2) ◽  
pp. 315-320 ◽  
Author(s):  
Tianyu Chen ◽  
Shaoyun Qin ◽  
Ying Dai

Tanshinone IIA is the phenanthrenequinone derivative extracted from the perennial plant Salvia miltiorrhiza Bunge (red sage). We investigated whether inhibition of the nucleotide-binding oligomerization domain (NOD)-like receptor family protein 3 (NLRP3) inflammasome mediates the protective effect of tanshinone IIA in acute lung injury (ALI) induced in rats by oleic acid (OA) injection. Compared with the control treatment, OA injection induced pulmonary histological impairment, increased the lung wet/dry weight ratio (7.0?1.1 vs 4.?0.6 ) and CO2 partial pressure (PaCO2) (52?6.4 vs 40?3.6 mmHg), decreased arterial O2 partial pressure (PaO2) (63?8.4 vs 100?3.0 mmHg), and increased tumor necrosis factor ? (TNF?) (8.8?2.3 vs 5.2 ?1.5 pg/mL), monocyte chemoattractant protein-1 (MCP-1) (36.1?4.9 vs 25.2?6.6 pg/mL) and interleukin-1? (IL-1?) (15.9?3.2 vs 4.6?1.3 pg/mL) in the bronchoalveolar lavage (BAL) fluid. Tanshinone IIA provided protection against ALI, observed as a reduction in the lung wet/dry weight ratio and CO2 partial pressure, and increased O2 partial pressure. The cytokine increase was also prevented. Tanshinone IIA attenuated increased protein levels of NLRP3, caspase-1 and IL-1? in pulmonary tissues, suggesting that it ameliorates ALI by preventing NLRP3 inflammasome activation.


2012 ◽  
Vol 41 (1) ◽  
Author(s):  
Jiří Faimon ◽  
Monika Ličbinská ◽  
Petr Zajíček ◽  
Ondra Sracek

Permanent drips from straw stalactites of selected caves of the Moravian Karst were studied during one-year period. A hypothetical partial pressure of CO2 that has participated in limestone dissolution, PCO2(H)=10-1.53±0.04, was calculated from the dripwater chemistry. The value significantly exceeds the partial pressures generally measured in relevant shallow karst soils, PCO2(soil)=10-2.72±0.02. This finding may have important implications for karst/cave conservation and paleoenvironmental reconstructions.Keywords: cave, carbon dioxide, dripwater, hydrogeochemistry,hypothetical partial pressure, karst processes, karstification model.


2017 ◽  
Author(s):  
Naohiro Kosugi ◽  
Daisuke Sasano ◽  
Masao Ishii ◽  
Shigeto Nishino ◽  
Hiroshi Uchida ◽  
...  

Abstract. In September 2013, we observed an expanse of surface water with low CO2 partial pressure (pCO2sea) (


1986 ◽  
Vol 61 (2) ◽  
pp. 486-494 ◽  
Author(s):  
R. B. Reeves ◽  
R. A. Morin

Effect of hydrostatic pressure (HP) on whole blood (WB) or erythrocyte suspension hemoglobin (Hb) O2 affinity has been studied using newly developed techniques. O2 partial pressure at which hemoglobin is half-saturated with O2 (P50) measurements were made at 5 HP (1, 26, 51, 76, and 126 ATA) on thin films of human WB or erythrocytes at 37 degrees C. CO2 partial pressure of WB was either 28 or 57 Torr (film pH 7.51 or 7.31). HP increased affinity of erythrocytes and WB. For erythrocytes in tris(hydroxymethyl)aminomethane buffer, the ratio (r) of P50 (1 ATA)/P50 (51 ATA) was 1.089 (P less than 0.01) at pH 7.0. WB P50 decreased with HP at a rate of -3.3 X 10(-2) Torr X atm-1; change in P50 at higher HP vs. 1 ATA was highly significant (P less than 0.01). No effect of HP was seen on the CO2 Bohr coefficient. Inert gas choice, N2 vs. helium (He), had no effect. Measurement of decrease of P50 with HP at 76 ATA in hemolyzed WB gave an r of 1.15, as great or greater than that found in WB, indicates that Donnan equilibrium alteration is not involved. No effect of HP was found in WB on the ratio of P50 of erythrocytes with normal (5 mmol/l erythrocytes) 2,3-diphosphoglycerate (DPG) to P50 of erythrocytes with less than 5% of normal DPG; i.e., no effect of pressure was seen on the independent influence of DPG on P50. WB measurements of Hb O2 uptake under simulated physiological conditions are characterized by a net decrease in partial molal volume on oxygenation of 30–35 ml/mol Hb4.


Sign in / Sign up

Export Citation Format

Share Document