C4 Photosynthesis: Quantum Requirement, C4 and Overcycling and Q-Cycle Involvement

1990 ◽  
Vol 17 (1) ◽  
pp. 1 ◽  
Author(s):  
RT Furbank ◽  
CLD Jenkins ◽  
MD Hatch

The relationship between overcycling of the C4 acid cycle in C4 photosynthesis (due to CO2 leakage) and the quantum yield of photosynthesis is considered. From a comparison of theoretical and measured quantum yields we suggest that the high efficiency of light utilisation by most C4 plants can only be explained by the mandatory involvement of both the Q-cycle and cyclic or pseudocyclic electron transport in the proton partitioning process. The existence of the Q-cycle mechanism may have been a prerequisite for the evolution of the C4 pathway.

1990 ◽  
Vol 17 (5) ◽  
pp. 579 ◽  
Author(s):  
JP Krall ◽  
GE Edwards

The quantum yields of non-cyclic electron transport from photosystem II (determined from chlorophyll a fluorescence) and carbon dioxide assimilation were measured in vivo in representative species of the three subgroups of C4 plants (NADP-malic enzyme, NAD-malic enzyme and PEP-carboxykinase) over a series of intercellular CO2 concentrations (CI) at both 21% and 2% O2. The CO2 assimilation rate was independent of O2 concentration over the entire range of Ci (up to 500 μbar) in all three C4 subgroups. The quantum yield of PS II electron transport was similar, or only slightly greater, in 21% v. 2% O2 at all Ci values. In contrast, in the C3 species wheat there was a large O2 dependent increase in PS II quantum yield at low CO2, which reflects a high level of photorespiration. In the C4 plants, the relationship of the quantum yield of PS II electron transport to the quantum yield of CO2 fixation is linear suggesting that photochemical use of energy absorbed by PS II is tightly linked to CO2 fixation in C4 plants. This relationship is nearly identical in all three subgroups and may allow estimates of photosynthetic rates of C4 plants based on measurements of PS II photochemical efficiency. The results suggest that in C4 plants both the photoreduction of O2 and photorespiration are low, even at very limiting CO2 concentrations.


1991 ◽  
Vol 18 (3) ◽  
pp. 267 ◽  
Author(s):  
JP Krall ◽  
GE Edwards

The partitioning of light energy absorbed by photosystem (PS) II in the C4 species maize was investigated under various photosynthetic photon flux densities (PPFD), temperatures, and intercellular CO2 concentrations. The relationship between the quantum yield of PSII electron transport (�e) and the quantum yield of CO2 assimilation (ΦCO2) was generally found to be linear, with similar slopes. This indicates that PSII electron transport is tightly coupled to CO2 assimilation such that measurements of �e may be used to estimate photosynthetic rates in maize. Coefficients of quenching of PSII chlorophyll fluorescence indicated that, under excessive PPFD or when CO2 assimilation was decreased due to suboptimal or supraoptimal temperature or low Ci, the energy in excess of that needed to drive the reduced rate of PSII electron transport was dissipated via a mechanism known to be correlated to the trans-thylakoid proton gradient (high energy quenching, qE) and a mechanism believed to arise in the PSII antenna chlorophyll (qN(slow)). At suboptimal temperature the energy dissipation was principally at the antenna level and qE was low, while at supraoptimal temperature the reverse was true. The results are discussed relative to coupling of PSII activity to CO2 fixation and mechanisms of energy dissipation in this C4 species.


1991 ◽  
Vol 18 (4) ◽  
pp. 369 ◽  
Author(s):  
JP Krall ◽  
GE Edwards ◽  
MSB Ku

The quantum yields of electron transport from photosystem II (PSII) (Φe, determined from chlorophyll a fluorescence), and CO2 assimilation (ΦCO2, photosynthetic rate/light intensity) were measured simultaneously in vivo with representative species of Flaveria which show a progression in development between C3 and C4 photosynthesis and in reduction of photorespiration. These were F. pringlei (C3), F. sonorensis (C3-C4, but lacking a C4 cycle), F. floridana (C3-C4, with partially functional C4 cycle), F. brownii (C4-like) and F. bidentis (C4). The level of PSII activity with varying CI under 210 mbar O2 was very similar in all species. However, the progressive development of C4 characteristics among the species produced an increased efficiency in utilisation of PSII derived energy for CO2 assimilation under 210 mbar O2, due to reduced photorespiratory losses at low CO2 levels. In all species, when photorespiration was limited by low O2 (20 mbar), there was a linear or near linear relationship between the quantum yield of PSII v. the quantum yield of CO2 fixation with varying intercellular levels of CO2 (Ci) indicating that CO2 fixation in this case is linked to PSII activity. When switching from 20 to 210 mbar O2 at atmosphere levels of CO2, there was a similar decrease in the efficiency in utilising PSII activity for CO2 assimilation at different light intensities, but the degree of sensitivity to O2 progressively decreased among the species concomitant with the development of C4 photosynthesis. These results may help explain why there is an advantage to evolution of C4 photosynthesis in environments where Ci becomes limiting.


RSC Advances ◽  
2021 ◽  
Vol 11 (62) ◽  
pp. 39142-39146
Author(s):  
Yi-Shan Lin ◽  
Han-Yu Tsai ◽  
Jung-Kuan Huang ◽  
Ching-Fuh Lin

The fluorescent solution with a resonance displacement of only 12.8 (cm−1) for the CN functional group gives this film a quantum yield as high as 84.8%.


2013 ◽  
Vol 721 ◽  
pp. 233-236
Author(s):  
Peng Li

The quantum yield is an important parameter to evaluate the initiation efficiency of photoinitiators and improve the curing velocity of photocurable materials. In this paper, two α-hydroxy ketone photoinitiators (Darocure1173 and Irgacure184) were studied based on the spectroscopic analysis and photo-initiated theory. Exposure fore-and-aft absorption spectra of samples with different exposure thickness (5mm, 10mm, 15mm, 20mm and 25mm) were measured. Quantum yields were obtained by analyzing the relationship between the exposure thickness and evaluation error. The curing velocity related to different photoinitiator and photoinitiator mass percentage was studied. Results show that quantum yields of Darocure1173 and Irgacure184 are 0.277% and 0.207% respectively at absorption peak (247nm). Optimal proportions of two photoinitiators are 6% and 5% respectively. Darocure1173 is prior to Irgacure184 in curing velocity.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 203
Author(s):  
Maria Ermakova ◽  
Robert T. Furbank ◽  
Susanne von Caemmerer

C4 plants play a key role in world agriculture and strategies to manipulate and enhance C4 photosynthesis have the potential for major agricultural impacts. The C4 photosynthetic pathway is a biochemical CO2 concentrating mechanism that requires the coordinated functioning of mesophyll and bundle sheath cells of leaves. Chloroplast electron transport in C4 plants is shared between the two cell types; it provides resources for CO2 fixation therefore underpinning the efficiency of photosynthesis. Using the model monocot C4 species Setaria viridis (green foxtail millet) we demonstrated that the Cytochrome (Cyt) b6f complex regulates the electron transport capacity and thus the rate of CO2 assimilation at high light and saturating CO2. Overexpression of the Cyt b6f in both mesophyll and bundle sheath cells results in a higher electron throughput and allows better light conversion efficiency in both photosystems. Importantly, increased Cyt b6f abundance in leaves provides higher rates of C4 photosynthesis without marked changes in Rubisco or chlorophyll content. Our results demonstrate that increasing the rate of electron transport is a viable strategy for improving the light conversion efficiency in C4 crop species like maize and sorghum.


1988 ◽  
Vol 15 (2) ◽  
pp. 93 ◽  
Author(s):  
JR Evans

Three characteristics of shade plants are reviewed. Firstly, they have relatively more chlorophyll b and the associated light-harvesting chlorophyll a/b-protein complex (LHC). Two currently accepted reasons for this are not supported by quantitative analysis. Instead, the reduced protein cost of complexing chlorophyll in LHC and the turnover of the 32 kDa herbicide binding protein are considered. Secondly, shade plants have low electron transport capacities per unit of chlorophyll. This is primarily related to a reduction in the amount of electron transport components such as the cytochrome f complex and the ATPase. The nitrogen cost of the thylakoid membranes per unit of light absorbed is thereby reduced, but the irradiance range over which light is used with high efficiency is also reduced. Thirdly, shade plants have less RuP2 carboxylase and other soluble proteins for a given amount of chlorophyll. However, while the ratio of RuP2 carboxylase protein to thylakoid protein declined, the ratio of the RuP2 carboxylase activity to electron transport activity increased. For several species, the relationship between the rate of CO2 assimilation and leaf nitrogen content depends on the irradiance during growth.


2016 ◽  
Vol 852 ◽  
pp. 1265-1270
Author(s):  
Sai Jiang Zhu ◽  
Chang Qing Ye ◽  
Yan Fu ◽  
Zuo Qing Liang ◽  
Xiao Mei Wang

Two new anthracene derivatives were synthesized as emitter for low power triplet-triplet annihilation upconversion. Compared with anthracene, the emitter exhibits high quantum yields up to 85%. Pd (II) tetraphenylporphyrin which was selected as the sensitizer with the existence of BBA in DMF, We find a pretty high efficiency (Φuc=21.9%) of the upconversion fluorescence at 532nm with a low excitation power density of 0.5w/cm2.With the comparison of Anthracene, BBA and BTPA systems, quantum yield of the emitter is very important to the improving of the efficiency of upconversion.


Sign in / Sign up

Export Citation Format

Share Document