Stable reference genes in granulosa cells of bovine dominant follicles during follicular growth, FSH stimulation and maternal aging

2016 ◽  
Vol 28 (6) ◽  
pp. 795 ◽  
Author(s):  
Muhammad Irfan-ur-Rehman Khan ◽  
Fernanda Caminha Faustino Dias ◽  
Isabelle Dufort ◽  
Vikram Misra ◽  
Marc-Andre Sirard ◽  
...  

The aim of the present study was to determine a set of reference genes in granulosa cells of dominant follicles that are suitable for relative gene expression analyses during maternal and follicular aging. Granulosa cells of growing and preovulatory dominant follicles were collected from aged and young cows (maternal aging study) and from FSH-stimulated follicles developing under different durations of FSH treatment (follicular aging study). The mRNA levels of the two commonly used reference genes (GAPDH, ACTB) and four novel genes (UBE2D2, EIF2B2, SF3A1, RNF20) were analysed using cycle threshold values. Results revealed that mRNA levels of GAPDH, ACTB, EIF2B2, RNF20, SF3A1 and UBE2D2 were similar (P > 0.05) between dominant follicle type, age and among follicles obtained after FSH-stimulation, but differed (P = 0.005) due to mRNA processing (i.e. with versus without amplification). The stability of reference genes was analysed using GeNorm, DeltaCT and NormFinder programs and comprehensive ranking order was determined using RefFinder. The mRNA levels of GAPDH and ACTB were less stable than those of UBE2D2 and EIF2B2. The geometric mean of multiple genes (UBE2D2, EIF2B2, GAPDH and SF3A1) is a more appropriate reference control than the use of a single reference gene to compare relative gene expression among dominant and FSH-stimulated follicles during maternal and/or follicular aging studies.

2020 ◽  
Vol 51 (7) ◽  
pp. 2997-3006
Author(s):  
Laura Alvarez‐Lee ◽  
Alejandra García‐Gasca ◽  
Sergio Martínez‐Díaz ◽  
Neftalí Gutiérrez‐Rivera

Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 372
Author(s):  
Aleksandra Dunislawska ◽  
Anna Slawinska ◽  
Maria Siwek

The selection of a suitable reference gene assures a reliable gene expression analysis when using the qPCR method. Normalization of the reaction is based on the basic metabolism genes. These genes show a constant, unregulated expression in all cells and function throughout their lifetime. In the current study, seven reference gene candidates were screened using RT-qPCR, to determine the best-matched pair of reference genes in the chicken DT40 cell line. The DT40 was derived from bursal lymphoma cells that were subjected to RAV-1 bird retroviral infection. It is a simplified in vitro model that allows tracking the direct interaction of stimulants on the lymphoid population and profiling of the hepatocellular B cell transcriptome. The reference gene analysis was carried out using statistical tools integrating four independent methods—geNorm, Best Keeper, NormFinder, delta Ct and RefFinder. Based on the selected reference genes, the relative gene expression analysis was done using the ddCt method. Complete relative gene expression study on a panel of the target genes revealed that proper selection of reference genes depending on the tissue eliminate decreases in data quality. The SDHA and RPL4 genes constitute stable internal controls as reference genes when analyzing gene expression in the DT40 cell line.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7181 ◽  
Author(s):  
Louise Ramhøj ◽  
Marta Axelstad ◽  
Terje Svingen

Relative gene expression data obtained from quantitative RT-PCR (RT-qPCR) experiments are dependent on appropriate normalization to represent true values. It is common to use constitutively expressed endogenous reference genes (RGs) for normalization, but for this strategy to be valid the RGs must be stably expressed across all the tested samples. Here, we have tested 10 common RGs for their expression stability in cerebral cortex from young rats after in utero exposure to thyroid hormone (TH) disrupting compounds. We found that all 10 RGs were stable according to the three algorithms geNorm, NormFinder and BestKeeper. The downstream target gene Pvalb was significantly downregulated in brains from young rats after in utero exposure to propylthiouracil (PTU), a medicinal drug inhibiting TH synthesis. Similar results were obtained regardless of which of the 10 RGs was used for normalization. Another potential gene affected by developmental TH disruption, Dio2, was either not affected, or significantly upregulated about 1.4-fold, depending on which RG was used for normalization. This highlights the importance of carefully selecting correct RGs for normalization and to take into account the sensitivity of the RT-qPCR method when reporting on changes to gene expression that are less than 1.5-fold. For future studies examining relative gene expression in rat cerebral cortex under toxicological conditions, we recommend using a combination of either Rps18/Rpl13a or Rps18/Ubc for normalization, but also continuously monitor any potential regulation of the RGs themselves following alterations to study protocols.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4624-4624 ◽  
Author(s):  
Xiaoyuan He ◽  
Mingfeng Zhao ◽  
Jinyan Chen ◽  
Rimao Wu ◽  
Jianlei Zhang ◽  
...  

Abstract Background: Recent years, the incidence and mortality of fungal infection has been on the rise in the patients with hematologic malignancies. This is mainly associated with antifungal resistance and the restricted number of available antifungal drugs. Candida species is one of the most prevalent pathogens in these immunodeficient patients. However, the study of azole resistance mechanisms of Candida has focused on C.albicans, C.glabrata, C.tropicalis. And few studies talked about resistance mechanisms of C.krusei, especially resistant to itraconazole. It was reported that the mutation or overexpression of 14¦Á-demethylases (encoded by ERG11) and upregulation of efflux transporters (encoded by ABC1 and ABC2) may be involved in azole resistance of C.krusei. Here, The purpose of the present study is to preliminarily explore the main molecular mechanisms responsible for Candida krusei clinical isolates to itraconazole, and may provide new sight into fungal infection therapy. Methods: The 14¦Á-demethylases encoded by ERG11 gene in the 16 C.krusei clinical isolates were amplified by polymerase chain reaction (PCR), and their nucleotide sequences were determined to detect point mutations. Meanwhile, ERG11 and efflux transporters (ABC1 and ABC2) genes were determined by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) for their expression in itraconazole-resistant (R), itraconazole-susceptible dose dependent (SDD) and itraconazole- susceptible (S) C.krusei at the mRNA level. Results: We found 7-point mutations in ERG11 gene of all the C.krusei clinical isolates, including 6 synonymous mutations and 1 missense mutation (C44T). However, the missense mutation was found in the three groups. The mRNA levels of ERG11 gene in itraconazole-resistant isolates showed higher expression compared with itraconazole-susceptible dose dependent and itraconazole- susceptible ones (P=0.015 and P=0.002 respectively). ABC2 gene mRNA levels in itraconazole-resistant group was significantly higher than the other two groups, and the levels of their expression in the isolates appeared to increase with the decrease of susceptibility to itraconazole (P=0.007 in SDD compared with S, P=0.016 in SDD with R, and P<0.001 in S with R respectively). While ABC1 gene presented lower expression in itraconazole resistant strains. However, the mRNA levels of ERG11, ABC1 and ABC2 in a C.krusei (CK10) resistant to both itraconazole and voriconazole were expressed highest in all the itraconazole-resistant isolates. The relative mRNA levels of gene ABC2 and ERG11 can be found in Fig.1 and Fig.2 respectively. Conclusions: There are ERG11 gene polymorphisms in clinical isolates of C.krusei. ERG11 gene mutations were not found to be involved in the development of itraconazole resistance in C.krusei. ERG11 and ABC2 overexpression might be responsible for the acquired itraconazole resistance of these clinical isolates. Therefore, combination of azole and selective efflux transporter inhibitors may help reverse azole resistance and enhance antifungal effect. Figure 1. ABC2 relative gene expression levels in three groups of C.krusei clinical isolates. (A) Relative levels of ABC2 mRNA in all the C.krusei clinical isolates. ABC2 gene expression levels was quantified and normalized relative to the housekeeping gene, ACT1; S, itraconazole-susceptible; SDD, itraconazole-susceptibledose dependent; R, itraconazole-resistant. (B) Log10+3 fold increase of gene expression levels in three groups. (*P<0.05 in R compared with SDD; **P<0.01 in SDD with S; ***P<0.001 in R with S) Figure 1. ABC2 relative gene expression levels in three groups of C.krusei clinical isolates. (A) Relative levels of ABC2 mRNA in all the C.krusei clinical isolates. ABC2 gene expression levels was quantified and normalized relative to the housekeeping gene, ACT1; S, itraconazole-susceptible; SDD, itraconazole-susceptibledose dependent; R, itraconazole-resistant. (B) Log10+3 fold increase of gene expression levels in three groups. (*P<0.05 in R compared with SDD; **P<0.01 in SDD with S; ***P<0.001 in R with S) Figure 2. ERG11 relative gene expression levels in three groups of C.krusei clinical isolates. (A) Relative levels of ERG11 mRNA in all the C.krusei clinical isolates. ERG11 gene expression levels was quantified and normalized relative to the housekeeping gene, ACT1; S, itraconazole-susceptible; SDD, itraconazole-susceptibledose dependent; R, itraconazole-resistant. (B) Log10+3 fold increase of gene expression levels in three groups. (NS, no significance in SDD compared with S; *P<0.05 in R with SDD; **P<0.01 in R with S) Figure 2. ERG11 relative gene expression levels in three groups of C.krusei clinical isolates. (A) Relative levels of ERG11 mRNA in all the C.krusei clinical isolates. ERG11 gene expression levels was quantified and normalized relative to the housekeeping gene, ACT1; S, itraconazole-susceptible; SDD, itraconazole-susceptibledose dependent; R, itraconazole-resistant. (B) Log10+3 fold increase of gene expression levels in three groups. (NS, no significance in SDD compared with S; *P<0.05 in R with SDD; **P<0.01 in R with S) Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (15) ◽  
pp. 7144
Author(s):  
Muriel C. Bischof ◽  
Sonja Häckel ◽  
Andrea Oberli ◽  
Andreas S. Croft ◽  
Katharina A. C. Oswald ◽  
...  

Increasing evidence implicates intervertebral disc (IVD) degeneration as a major contributor to low back pain. In addition to a series of pathogenic processes, degenerated IVDs become vascularized in contrast to healthy IVDs. In this context, angiopoietin (Ang) plays a crucial role and is involved in cytokine recruitment, and anabolic and catabolic reactions within the extracellular matrix (ECM). Over the last decade, a progenitor cell population has been described in the nucleus pulposus (NP) of the IVD to be positive for the Tie2 marker (also known as Ang-1 receptor). In this study, we investigated the influence of Ang-1 and Ang-2 on human NP cell (Tie2+, Tie2- or mixed) populations isolated from trauma patients during 7 days in normoxia (21% O2) or hypoxia (≤ 5% O2). At the end of the process, the proliferation and metabolic activity of the NP cells were analyzed. Additionally, the relative gene expression of NP-related markers was evaluated. NP cells showed a higher proliferation depending on the Ang treatment. Moreover, the study revealed higher NP cell metabolism when cultured in hypoxia. Additionally, the relative gene expression followed, with an increase linked to the oxygen level and Ang concentration. Our study comparing different NP cell populations may be the start of new approaches for the treatment of IVD degeneration.


1998 ◽  
Vol 83 (2) ◽  
pp. 448-452
Author(s):  
H. F. Erden ◽  
I. H. Zwain ◽  
H. Asakura ◽  
S. S. C. Yen

Recently, we reported that the thecal compartment of the human ovary contains a CRF system replete with gene expression and protein for corticotropin-releasing factor (CRF), CRF-Receptor 1 (CRF-R1), and the blood-derived high affinity CRF-binding protein (CRF-BP). Granulosa cells are devoid of the CRF system. The parallel increases in intensity of CRF, CRF-R1, and 17α-hydroxylase messenger ribonucleic acid (mRNA) and proteins in thecal cells with follicular maturation suggest that the intraovarian CRF system may play an autocrine role regulating androgen biosynthesis, with a downstream effect on estrogen production by granulosa cells. The functionality of the ovarian CRF system may be conditioned by the relative presence of plasma-derived CRF-BP by virtue of its localization of protein, but not transcript in thecal cells and its ability to compete with CRF for the CRF receptor. To further these findings, in the present study we have examined the effect of CRF on LH-stimulated 17α-hydroxylase (P450c17) gene expression and androgen production by isolated thecal cells from human ovarian follicles (11–13 mm). During the 48-h culture, addition of LH (10 ng/mL) to the medium increased by 5- and 6-fold dehydroepiandrosterone and androstenedione production by thecal cells. Remarkably, the LH-stimulated, but not basal, androgen production was inhibited by CRF in a time- and dose-dependent manner. The half-maximal (ID50) effect dose of CRF occurred at 5 × 10−8 mol/L, and at a maximal concentration of 10−6 mol/L, CRF completely inhibited LH-stimulated androgen production. This inhibitory effect of CRF became evident at 12 h (45%), and by 24 h the effect was more pronounced, with a 70% reduction from baseline. As determined by Northern analyses, CRF dose dependently decreased LH-stimulated P450c17 mRNA levels, with a maximal inhibition of 85% P450c17 gene expression at a CRF concentration of 10−6 mol/L. With the addition of 10−6 mol/L of the antagonist α-helical CRF-(9–41), the inhibitory effect of CRF was partially reversed for both P450c17 mRNA (75%) and androgen production (50%), indicating the CRF-R1-mediated event. In conclusion, the present study demonstrated a potent inhibitory effect of CRF on LH-stimulated dehydroepiandrosterone and androstenedione production that appears to be mediated through the reduction of P450c17 gene expression. Thus, the ovarian CRF system may function as autocrine regulators for androgen biosynthesis in the thecal cell compartment to maintain optimal substrate for estrogen biosynthesis by granulosa cells. Further studies to define the role of CRF-BP in the endocrine modulation of the intraovarian CRF system are needed.


Sign in / Sign up

Export Citation Format

Share Document