scholarly journals Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase–dimethylarginine dimethylaminohydrolase–nitric oxide axis

2015 ◽  
Vol 27 (4) ◽  
pp. 655 ◽  
Author(s):  
Bethany K. Redel ◽  
Kimberly J. Tessanne ◽  
Lee D. Spate ◽  
Clifton N. Murphy ◽  
Randall S. Prather

Culture systems promote development at rates lower than the in vivo environment. Here, we evaluated the embryo’s transcriptome to determine what the embryo needs during development. A previous mRNA sequencing endeavour found upregulation of solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 (SLC7A1), an arginine transporter, in in vitro- compared with in vivo-cultured embryos. In the present study, we added different concentrations of arginine to our culture medium to meet the needs of the porcine embryo. Increasing arginine from 0.12 to 1.69 mM improved the number of embryos that developed to the blastocyst stage. These blastocysts also had more total nuclei compared with controls and, specifically, more trophectoderm nuclei. Embryos cultured in 1.69 mM arginine had lower SLC7A1 levels and a higher abundance of messages involved with glycolysis (hexokinase 1, hexokinase 2 and glutamic pyruvate transaminase (alanine aminotransferase) 2) and decreased expression of genes involved with blocking the tricarboxylic acid cycle (pyruvate dehydrogenase kinase, isozyme 1) and the pentose phosphate pathway (transaldolase 1). Expression of the protein arginine methyltransferase (PRMT) genes PRMT1, PRMT3 and PRMT5 throughout development was not affected by arginine. However, the dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2 message was found to be differentially regulated through development, and the DDAH2 protein was localised to the nuclei of blastocysts. Arginine has a positive effect on preimplantation development and may be affecting the nitric oxide–DDAH–PRMT axis.

Author(s):  
Wusheng Xiao ◽  
William M Oldham ◽  
Carnen Priolo ◽  
Arvind K Pandey ◽  
Joseph Loscalzo

Rationale: Specific mechanisms linking inflammation and metabolic re-programming, two hallmarks of many pathobiological processes, remain incompletely defined. Objective: To delineate the integrative regulatory actions governing inflammation and metabolism in endothelial cells (ECs). Methods and Results: Metabolomic profiling, glucose labeling and tracing, and Seahorse extracellular flux analyses revealed that the inflammatory mediators, tumor necrosis factor α (TNFα) and lipopolysaccharide (LPS), extensively reprogram cellular metabolism, and particularly enhance glycolysis, mitochondrial oxidative phosphorylation (OXPHOS), and the pentose phosphate pathway (PPP) in primary human arterial ECs. Mechanistically, the enhancement in glycolysis and PPP is mediated by activation of the nuclear factor-κB (NF-κB)-6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase 3 (PFKFB3) axis and upregulation of glucose 6-phosphate dehydrogenase (G6PD), respectively; while enhanced OXPHOS was attributed to suppression of the forkhead box O1 (FOXO1)-pyruvate dehydrogenase kinase 4 (PDK4) axis. Restoration of the FOXO1-PDK4 axis attenuated the TNFα- or LPS-induced increase in OXPHOS but worsened inflammation in vitro, whereas enhancement of OXPHOS by pharmacological blockade of PDKs attenuated inflammation in mesenteric vessels of LPS-treated mice. Notably, suppression of G6PD expression or its activity potentiated the metabolic shift to glycolysis and/or endothelial inflammation, while inhibition of the NF-κB-PFKFB3 signaling, conversely, blunted the increased glycolysis and/or inflammation in in vitro and in vivo sepsis models. Conclusions: These results indicate that inflammatory mediators modulate the metabolic fates of glucose, and that stimulation of glycolysis promotes inflammation, whereas enhancement of OXPHOS and the PPP suppresses inflammation in the endothelium. Characterization of these immunometabolic phenotypes may have implications for the pathogenesis and treatment of many cardiovascular diseases.


ChemBioChem ◽  
2010 ◽  
Vol 11 (9) ◽  
pp. 1219-1223 ◽  
Author(s):  
Obiamaka Obianyo ◽  
Corey P. Causey ◽  
Tanesha C. Osborne ◽  
Justin E. Jones ◽  
Young-Ho Lee ◽  
...  

2012 ◽  
Vol 24 (1) ◽  
pp. 185
Author(s):  
K. Tessanne ◽  
B. Redel ◽  
K. Whitworth ◽  
L. Spate ◽  
A. Brown ◽  
...  

Transcriptional deep sequencing analysis by Bauer et al. (2010) revealed a significant increase in expression of the arginine transporter SLC7A1 in in vitro–cultured porcine blastocysts compared with those cultured in vivo and this was corrected through supplemental arginine. This indicates an important role for arginine during porcine embryo development. Arginine is the precursor for nitric oxide (NO) production and previous work in mice and cattle has shown decreased development when embryos were cultured with a nitric oxide synthase (NOS) inhibitor. The NOS activity is inhibited by monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA) that are released during degradation of proteins methylated by protein arginine methyltransferases (PRMT). The enzyme dimethylarginine dimethylaminohydrolase (DDAH) is responsible for degrading MMA and ADMA in the cell. Therefore, the goal of this study was to investigate whether this PRMT-DDAH-NO axis exists in pre-implantation porcine embryos. To this end, expression of PRMT1, PRMT3, PRMT5, DDAH1 and endothelial NOS (NOS3) was analysed at different stages of embryonic development using real-time quantitative RT-PCR. In addition, the effect of supplemental arginine (1.69 mM) on the expression of the aforementioned genes was investigated. Production of NO in porcine embryos was also visualised using 4-amino-5-methylamino-2,7-difluorofluorescein diacetate (DAF-FM-DA). In vitro–fertilized porcine embryos were collected at the 4-cell and blastocyst stages. The RNA was isolated from pools of 18 to 20 embryos and cDNA, was synthesised using Superscript III (Invitrogen, Carlsbad, CA, USA). Real-time PCR analysis was performed and the mean fold change in gene expression from the reference gene YWHAG was analysed by t-test after a log transformation. Expression of PRMT3 and PRMT5 was significantly higher (P < 0.05) in blastocysts versus 4-cell embryos. Expression of PRMT1, however, was higher in 4-cell embryos (P < 0.05). The expression of DDAH1 was detected in 4-cell embryos, but DDAH1 became undetectable by the blastocyst stage. Previous microarray analysis in our laboratory by Whitworth et al. (2005 Biol. Reprod. 72(6), 1437–1451) also revealed a significant up-regulation of DDAH2 expression at the 4-cell stage versus blastocysts. Expression of NOS3 was undetectable in the 4-cell and blastocyst; however, NO was detected in 4-cell and blastocyst stage embryos by using DAF-FM-DA. This suggests that a different NOS may be acting in the porcine embryo. Addition of arginine did not have a significant effect on expression of the analysed genes. These results suggest that PRMT-DDAH regulated NO production may play a role during porcine embryo development. Understanding the PRMT-DDAH-NO axis and its regulation during embryonic development will further our ability to tailor in vitro culture so that it more appropriately mimics that of an in vivo environment. Funding was provided by NIH U42 RR18877.


2005 ◽  
Vol 386 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Rafal SWIERCZ ◽  
Maria D. PERSON ◽  
Mark T. BEDFORD

PRMT3 (protein arginine methyltransferase 3) is one of four type I arginine methyltransferases that catalyse the formation of asymmetric dimethylarginine. PRMT3 is unique in that its N-terminus harbours a C2H2 zinc-finger domain that is proposed to confer substrate specificity. In addition, PRMT3 is the only type I enzyme that is restricted to the cytoplasm. Known in vitro substrates for PRMT3 include GST–GAR (a glutathione S-transferase fusion protein containing the glycine- and arginine-rich N-terminal region of fibrillarin), Sam68 (Src-associated substrate during mitosis 68 kDa) and PABP-N1 [poly(A)-binding protein-N1; PABP2]. Here we report the identification of an in vivo substrate for mammalian PRMT3. We found that FLAG-tagged PRMT3 can ‘pull down’ a protein with a molecular mass of 30 kDa from HeLa cell extracts. MS identified this PRMT3-interacting protein as rpS2 (ribosomal protein S2). In vitro studies showed that the zinc-finger domain of PRMT3 is necessary and sufficient for binding to rpS2. In addition, rpS2 is methylated by PRMT3 in vitro and is also methylated in cell lines. Deletion analysis of the rpS2 amino acid sequence identified a N-terminal Arg-Gly repeat as the methylation site. Furthermore, both PRMT3 and rpS2 co-sediment with free ribosomal subunits. These studies implicate PRMT3 in ribosomal function and in the regulation of protein synthesis.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 277
Author(s):  
Lei Wang ◽  
Hye-Won Yang ◽  
Ginnae Ahn ◽  
Xiaoting Fu ◽  
Jiachao Xu ◽  
...  

In the present study, the in vitro and in vivo anti-inflammatory effects of the sulfated polysaccharides isolated from Sargassum fulvellum (SFPS) were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and zebrafish. The results indicated that SFPS improved the viability of LPS-stimulated RAW 264.7 macrophages from 80.02 to 86.80, 90.09, and 94.62% at the concentration of 25, 50, and 100 µg/mL, respectively. Also, SFPS remarkably and concentration-dependently decreased the production levels of inflammatory molecules including nitric oxide (NO), tumor necrosis factor-alpha, prostaglandin E2, interleukin-1 beta, and interleukin-6 in LPS-treated RAW 264.7 macrophages. In addition, SFPS significantly inhibited the expression levels of cyclooxygenase-2 and inducible nitric oxide synthase in LPS-treated RAW 264.7 macrophages. Furthermore, the in vivo test results indicated that SFPS improved the survival rate of LPS-treated zebrafish from 53.33 to 56.67, 60.00, and 70.00% at the concentration of 25, 50, and 100 µg/mL, respectively. In addition, SFPS effectively reduced cell death, reactive oxygen species, and NO levels in LPS-stimulated zebrafish. Taken together, these results suggested that SFPS possesses strong in vitro and in vivo anti-inflammatory activities, and could be used as an ingredient to develop anti-inflammatory agents in the functional food and pharmaceutical industries.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sara Busacca ◽  
Qi Zhang ◽  
Annabel Sharkey ◽  
Alan G. Dawson ◽  
David A. Moore ◽  
...  

AbstractWe hypothesized that small molecule transcriptional perturbation could be harnessed to target a cellular dependency involving protein arginine methyltransferase 5 (PRMT5) in the context of methylthioadenosine phosphorylase (MTAP) deletion, seen frequently in malignant pleural mesothelioma (MPM). Here we show, that MTAP deletion is negatively prognostic in MPM. In vitro, the off-patent antibiotic Quinacrine efficiently suppressed PRMT5 transcription, causing chromatin remodelling with reduced global histone H4 symmetrical demethylation. Quinacrine phenocopied PRMT5 RNA interference and small molecule PRMT5 inhibition, reducing clonogenicity in an MTAP-dependent manner. This activity required a functional PRMT5 methyltransferase as MTAP negative cells were rescued by exogenous wild type PRMT5, but not a PRMT5E444Q methyltransferase-dead mutant. We identified c-jun as an essential PRMT5 transcription factor and a probable target for Quinacrine. Our results therefore suggest that small molecule-based transcriptional perturbation of PRMT5 can leverage a mutation-selective vulnerability, that is therapeutically tractable, and has relevance to 9p21 deleted cancers including MPM.


Sign in / Sign up

Export Citation Format

Share Document