scholarly journals Astaxanthin improves the developmental competence of in vitro-grown oocytes and modifies the steroidogenesis of granulosa cells derived from bovine early antral follicles

2019 ◽  
Vol 31 (2) ◽  
pp. 272 ◽  
Author(s):  
M. A. Abdel-Ghani ◽  
Y. Yanagawa ◽  
A. Z. Balboula ◽  
K. Sakaguchi ◽  
C. Kanno ◽  
...  

In this study we investigated the effect of astaxanthin (Ax), which exhibits strong antioxidant activity, during invitro growth (IVG) on the developmental competence of oocytes and steroidogenesis of granulosa cells derived from early antral follicles. Bovine oocyte–cumulus–granulosa complexes collected from early antral follicles were cultured for 12 days in the presence or absence (control) of 500µM Ax. The viability of oocytes and antrum formation in the granulosa cell layer during IVG culture were greater in the presence than absence of Ax (P<0.05). Regardless of Ax treatment, 17β-oestradiol production increased during IVG culture; however, progesterone production was significantly lower in the presence than absence of Ax (P<0.05). Reactive oxygen species levels were lower in Ax-treated oocytes than in controls after IVG (P<0.05). Although nuclear maturation and cleavage rates did not differ between the Ax-treated and control groups, Ax treatment led to weaker cathepsin B activity in oocytes and better blastocyst rates than in controls (P<0.05). Accordingly, Ax treatment during IVG increased the total number of cells in blastocysts (P<0.05). These results indicate that Ax supplementation of IVG medium improves the quality of bovine oocytes due to its antioxidative effects on growing oocytes and its suppression of the luteinisation of granulosa cells.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jolanta Opiela ◽  
Joanna Romanek ◽  
Daniel Lipiński ◽  
Zdzisław Smorąg

The objective of the present study was to evaluate the effect of hyaluronan (HA) during IVM on meiotic maturation, embryonic development, and the quality of oocytes, granulosa cells (GC), and obtained blastocysts. COCs were maturedin vitroin control medium and medium with additional 0.035% or 0.07% of exogenous HA. The meiotic maturity did not differ between the analysed groups. The best rate and the highest quality of obtained blastocysts were observed when 0.07% HA was used. A highly significant difference (P<0.001) was noted in the mean number of apoptotic nuclei per blastocyst and in the DCI between the 0.07% HA and the control blastocysts (P<0.01). Our results suggest that addition of 0.035% HA and 0.07% HA to oocyte maturation media does not affect oocyte nuclear maturation and DNA fragmentation. However, the addition of 0.07% HA during IVM decreases the level of blastocysts DNA fragmentation. Finally, our results suggest that it may be risky to increase the HA concentration during IVM above 0.07% as we found significantly higherBaxmRNA expression levels in GC cultured with 0.07% HA. The final concentration of HA being supplemented to oocyte maturation media is critical for the success of the IVP procedure.


2018 ◽  
Vol 30 (1) ◽  
pp. 206
Author(s):  
G. Singina ◽  
I. Lebedeva ◽  
T. Taradajnic ◽  
E. Shedova ◽  
A. Lopukhov ◽  
...  

Data on effects of progesterone (P4) during in vitro maturation of bovine oocytes on their capacity for embryonic development are contradictory. Our study was aimed at characterising effects of P4 and 2 luteotropic hormones, prolactin (PRL) and LH, on bovine oocyte developmental competence during the second step of two-step maturation (from metaphase (M)I to MII). Slaughterhouse-derived cumulus-enclosed oocytes (CEO) were matured for 12 or 24 h [one-step (OS) Control] in TCM-199 containing 10% fetal calf serum (FCS), 10 μg mL−1 porcine FSH, and 10 μg mL−1 ovine LH at 38.5°C and 5% CO2. The CEO cultured for 12 h were transferred to the following culture systems: (1) TCM-199 containing 10% FCS (Control 1) or (2) a monolayer of granulosa cells (GC) precultured for 12 h in TCM-199 containing 10% FCS (Control 2); then, the oocytes were matured for next 12 h. In both systems, the medium of experimental groups was supplemented with either P4 (50 ng mL−1) or bovine PRL (25 and 50 ng mL−1) or ovine LH (5 μg mL−1). All treatments were repeated 5 to 6 times using 138 to 196 oocytes per group. Following IVM, all oocytes underwent IVF as described previously (Singina et al. 2014 Reprod. Fertil. Dev. 26, 154). Embryos were cultured in CR1aa medium until Day 5 post-insemination and then transferred to the same medium supplemented with 5% FCS and cultured to Day 7. Embryo development was evaluated at Days 2 and 7 for cleavage and blastocyst formation. Apoptosis was detected by the TUNEL method using 26 to 47 blastocysts per group (from 4 to 5 separate experiments). For each system, arcsine-transformed data were analysed by one-way ANOVA. In OS Control, the cleavage and blastocyst rates were 68.9 ± 4.4% and 22.0 ± 2.4%, respectively. Regardless of the system or medium of two-step culture, the cleavage rate did not differ from that for OS Control, varying between 57.6 and 68.4%. In the absence of GC (System 1), the blastocyst yield in the P4 group (30.4 ± 0.8%) was greater (P < 0.05) than in OS Control and Control 1 (20.2 ± 2.7%) as well as in the groups treated with LH (19.1 ± 3.0%) and 25 ng mL−1 PRL (20.1 ± 2.7%). In the presence of GC, P4 raised the yield from 16.7 ± 2.3% (Control 2) to 27.7 ± 2.4% (P < 0.05). Furthermore, in System 2, the blastocyst rate in groups treated with P4 and 50 ng mL−1 PRL (25.0 ± 2.8%) was higher (P < 0.05) than in the LH group (13.9 ± 2.6%). Meanwhile, the proportion of apoptotic nuclei (2.3-6.9%) was not associated with the system of oocyte maturation or effects of hormones studied. Our data indicate that P4 (50 ng mL−1) can enhance the developmental competence of bovine oocytes during the second step of two-step maturation regardless of the presence of granulosa cells, whereas the similar effect of PRL (50 ng mL−1) is less pronounced and depends on the granulosa-conditioned environment. This research was supported by the Russian Science Foundation (project 16-16-10069).


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 860
Author(s):  
Wu-Sheng Sun ◽  
Hoon Jang ◽  
Mi-Ryung Park ◽  
Keon Bong Oh ◽  
Haesun Lee ◽  
...  

Oxidative stress has been suggested to negatively affect oocyte and embryo quality and developmental competence, resulting in failure to reach full term. In this study, we investigated the effect of N-acetyl-L-cysteine (NAC), a cell-permeating antioxidant, on developmental competence and the quality of oocytes and embryos upon supplementation (0.1–10 mM) in maturation and culture medium in vitro using slaughterhouse-derived oocytes and embryos. The results show that treating oocytes with 1.0 mM NAC for 8 h during in vitro maturation attenuated the intracellular reactive oxygen species (ROS) (p < 0.05) and upregulated intracellular glutathione levels (p < 0.01) in oocytes. Interestingly, we found that NAC affects early embryonic development, not only in a dose-dependent, but also in a stage-specific, manner. Significantly (p < 0.05) decreased cleavage rates (90.25% vs. 81.46%) were observed during the early stage (days 0–2), while significantly (p < 0.05) increased developmental rates (38.20% vs. 44.46%) were observed during the later stage (from day 3) of embryonic development. In particular, NAC supplementation decreased the proportion of apoptotic blastomeres significantly (p < 0.05), resulting in enhanced hatching capability and developmental rates during the in vitro culture of embryos. Taken together, our results suggest that NAC supplementation has beneficial effects on bovine oocytes and embryos through the prevention of apoptosis and the elimination of oxygen free radicals during maturation and culture in vitro.


2018 ◽  
Vol 18 (1) ◽  
pp. 87-98
Author(s):  
Seyede Zahra Banihosseini ◽  
Marefat Ghaffari Novin ◽  
Hamid Nazarian ◽  
Abbas Piryaei ◽  
Siavash Parvardeh ◽  
...  

Abstract Quercetin is a natural flavonoid with strong antioxidant activity. In the present study, we evaluate the influence of different concentrations of quercetin (QT) on intracytoplasmic oxidative stress and glutathione (GSH) concentration, during in vitro maturation (IVM) and fertilization in mouse oocytes. IVM was carried out in the presence of control (QT0), 5 (QT5), 10 (QT10), and 20 (QT20) μg/mL of QT. Nuclear maturation, intracellular GSH and ROS content were evaluated following the IVM. In these oocytes, we subsequently evaluated the effect of QT supplementation on embryo development, including 2-cell, 8-cell, and blastocyst rate. The results of the present study showed that the supplementation of 10 μg/mL QT in maturation medium increased the number of MII oocytes. In addition, fertilization and blastocyst rate in QT10 treatment group were significantly higher in comparison to the other groups, and elevated the amount of intracellular GSH content compared to other QT concentrations and control groups. The intracellular ROS level was the lowest among oocytes matured in Q5 and Q10 treatment groups. This result suggested that quercetin dose-dependently improves nuclear maturation and embryo development, via reducing intracytoplasmic oxidative stress in mature oocyte.


2006 ◽  
Vol 18 (2) ◽  
pp. 272
Author(s):  
K. Kananen-Anttila ◽  
M. Eronen ◽  
J. Matilainen ◽  
M. Kallio ◽  
J. Peippo ◽  
...  

We have studied the effect of suppressed IVM on the developmental competence of bovine oocytes, aiming at elucidating the importance of cytoplasmic maturation in fertilization and embryo development. Six replicates of abattoir-derived oocytes were randomly divided into three IVM groups. Control (n = 950): TCM-199 with glutamax-I (Gibco, Grand Island, NY, USA), 0.25 mM Na-pyruvate, 100 IU mL−1 penicillin and 100 μg mL−1 streptomycin, 50 ng mL−1 FSH, and 10% fetal bovine serum (FBS) (Gibco); Serum+FSH-free (n = 944): same as control but without FSH and FBS; α-amanitin (n = 977): same as control but with 10 μg mL−1 α-amanitin. Nuclear maturation of oocytes was studied 24 h after the onset of IVM, the formation of sperm aster structure 10 hours post-insemination (hpi) and the formation of pronuclei 20 hpi. Sperm aster was visualized with β-tubulin antibody (modified from Navara et al. 1999 Dev. Biol. 162, 29–40). Presumptive zygotes were cultured until Day 7 in modified SOFaaci + 4 mg mL−1 fatty acid-free BSA in 5% O2. Cumulus cell expansion was seen only in the control group. The results of nuclear maturation, fertilization, and embryo development are summarized in Table 1. Serum and FSH deprivation did not have a statistically significant effect on the parameters studied (vs. control). α-amanitin exposure during IVM reduced nuclear maturation, fertilization, and Day 3 embryo cleavage vs. control, and resulted in total blockage of Day 7 blastocyst development. The treatment groups had significantly smaller mean diameters of male pronuclei (control: 14 ± 0.6 μ­m; serum+FSH-free: 12 ± 0.5 μ­m, P < 0.05; α-amanitin: 10 ± 0.6 μ­m, P < 0.001) and sperm asters (control: 86 ± 4 μ­m; serum+FSH-free: 82 ± 4 μ­m, P < 0.01; α-amanitin: 49 ± 7 μm, P < 0.001) (nonparametric Kruskall Wallis and Mann-Whitney U tests) vs. control group. Despite reduction in pronucleus and sperm aster diameter, serum and FSH deprivation during IVM did not affect in vitro developmental competence of bovine oocytes, suggesting a need for re-evaluation of the components of IVM. α-Amanitin exposure in IVM disturbed nuclear maturation, fertilization, and embryo development, indicating the essence of early transcription. Table 1. Average percentages ± (n) for nuclear maturation, fertilization (min two pronuclei), embryo cleavage, and blastocyst development


2018 ◽  
Vol 30 (1) ◽  
pp. 164
Author(s):  
M. Fathi ◽  
A. R. Moawad ◽  
M. R. Badr

Cryopreservation of oocyte would be an alternative to overcome the limited availability of dromedary camel oocytes and allow improvements in in vitro production in this species. Our aim was to develop a protocol for vitrification of dromedary camel oocytes at the germinal vesicle (GV) stage using various cryoprotectant combinations and cryo-carriers. In experiment 1, cumulus–ppcyte complexes (COC) obtained at slaughter were equilibrated in a solution composed of 10% ethylene glycol (EG) and 0.25 M trehalose. The oocytes were then exposed for 60 s to vitrification solutions (VS) composed of 20% EG and 20% dimethyl sulfoxide (DMSO; VS1) or 25% EG plus 25% DMSO (VS2) or 25% EG and 25% glycerol (VS3). The COC were then transferred into decreasing concentration of trehalose solution (toxicity test). In experiment 2, COC were randomly divided into 4 groups and vitrified by using straw or open pulled-straw (OPS) or solid surface vitrification (SSV) or cryotop in VS1 or VS2. Following vitrification and warming viable oocytes were matured in vitro for 30 h at 39°C in 5% CO2 in air. Matured oocytes were fertilized in vitro by epididymal spermatozoa of mature male camels and then cultured in modified KSOMaa medium for 7 days. Oocyte viability, maturation, fertilization, and embryo development were evaluated. Data were analysed using one-way ANOVA and t-test. Viability and nuclear maturation rates were significantly lower (P ≤ 0.05) in oocytes exposed to VS3 (44.8% and 34.0%) than those exposed to VS1 (68.2% and 48.0%) and VS2 (79.3% and 56.9%). Although recovery rates were significantly lower (P ≤ 0.05) in oocytes vitrified using SSV or cryotop in either VS1 or VS2 solutions (66.9% to 71.1%) than those vitrified by straws using VS1 or VS2 solutions (86.3% to 91.0%), survival rates were higher in SSV and cryotop groups (90.7% to 94.8%) than straw and OPS (68.2% to 86.5%) groups. Among vitrified groups, maturation and fertilization rates (51.8% and 39.2%, respectively) were the highest in the cryotop-VS2 group. Those values were comparable to those seen in the controls (59.2% and 44.6%, respectively). Cleavage (22.5% to 27.9%), morula (13.2% to 14.5%), and blastocyst (6.4% to 8.5%) rates were significantly higher (P ≤ 0.05) in SSV and cryotop groups than in straws. No significant differences were observed in these parameters between cryotop and control groups. Together, the results show that both vitrification solution and cryodevice affect viability and developmental competence of vitrified/warmed dromedary camel oocytes. We report for the first time that dromedary camel oocytes vitrified at the GV stage have the ability to be matured, fertilized, and subsequently develop in vitro to produce blastocyst embryos at frequencies comparable to those obtained using fresh oocytes.


Zygote ◽  
2014 ◽  
Vol 23 (4) ◽  
pp. 563-572 ◽  
Author(s):  
Gustavo Bruno Mota ◽  
Ingrid Oliveira e Silva ◽  
Danielle Kaiser de Souza ◽  
Flavia Tuany ◽  
Michele Munk Pereira ◽  
...  

SummaryThe aim of this study was to evaluate the dose–response effect of insulin, plus follicle-simulating hormone (FSH) at a fixed concentration, in a serum-free defined culture medium (DCM) on the in vitro maturation of bovine cumulus–oocyte complexes (COCs). For oocyte nuclear maturation, the expression levels of GDF9, GLUT1, PRDX1 and HSP70.1 transcripts related to oocyte and embryo developmental competence were analysed. For in vitro maturation (IVM), cumulus–oocyte complexes from slaughterhouse ovaries were distributed into four groups based on insulin concentration added to serum-free DCM, which was composed of alpha minimum essential medium (α-MEM), as basal medium: (1) DCM control: 0 ng/ml; (2) DCM1: 1 ng/ml; (3) DCM10: 10 ng/ml; and (4) DCM100: 100 ng/ml. After IVM, the nuclear status of a sample of oocytes was analysed and the other oocytes were submitted for in vitro fertilization (IVF) and in vitro culture (IVC). Different concentrations of insulin did not affect significantly the nuclear maturation and cleavage rate (72 h post-insemination) across all groups. Blastocyst rate (192 h post-insemination) did not differ in DCM control (24.3%), DCM1 (27.0%) and DCM10 (26.3%) groups, but the DCM100 (36.1%) group showed a greater blastocyst rate (P < 0.05) than the DCM control. Insulin concentrations of 1, 10, or 100 ng/ml decreased the relative levels of GDF9 and HSP70-1 transcripts in oocytes at the end of IVM (P < 0.05). The transcripts levels of PRDX1 decreased (P < 0.05) only when 10 or 100 ng/ml insulin was added to the DCM medium. No difference in levels of GLUT1 transcripts (P > 0.05) was observed at the different insulin concentrations. The results indicated that insulin added to DCM influenced levels of transcripts related to cellular stress (HSP70-1 and PRDX1) and oocyte competence (GDF9) in bovine oocytes and at higher concentrations enhanced blastocyst production.


Zygote ◽  
2011 ◽  
Vol 20 (3) ◽  
pp. 249-259 ◽  
Author(s):  
Hisashi Nabenishi ◽  
Hiroshi Ohta ◽  
Toshihumi Nishimoto ◽  
Tetsuo Morita ◽  
Koji Ashizawa ◽  
...  

SummaryIn the present study, we investigated the effects of various concentrations of cysteine (0.0, 0.6, 1.2 and 1.8 mM) added to the maturation medium on nuclear maturation and subsequent embryonic development of bovine oocytes exposed to heat stress (HS: set at 39.5 °C for 5 h, 40.0 °C for 5 h, 40.5 °C for 6 h, and 40.0 °C for 4 h versus 38.5 °C for 20 h as the control group). This regime mimicked the circadian rhythm of the vaginal temperature of lactating dairy cows during the summer season in southwestern Japan. Moreover, we also evaluated the oocyte's reactive oxygen species (ROS) and glutathione (GSH) levels and the apoptosis levels of the oocytes and cumulus cells in the presence or absence of 1.2 mM cysteine. As a result, HS in the without-cysteine group significantly suppressed (p < 0.05) both the nuclear maturation rate up to the metaphase (M)II stage and the blastocyst formation rate compared with that of the control group. In addition, this group showed significantly higher (p < 0.05) ROS levels and significantly lower (p < 0.05) GSH levels than those of the control group. Moreover, the level of TdT-mediated dUTP nick end labelling (TUNEL)-positive cumulus cells in the HS without-cysteine group was significantly higher (p < 0.05) than that of the control group. However, the addition of 1.2 mM cysteine to the maturation medium restored not only the nuclear maturation, blastocyst formation rates and GSH contents, but also increased the ROS and TUNEL-positive levels of the cumulus cells, but not oocytes, to that of the control group. These results indicate that the addition of 1.2 mM cysteine during in vitro maturation (IVM) may alleviate the influence of heat stress for oocyte developmental competence by increasing GSH content and inhibiting the production of oocyte ROS followed by apoptosis of cumulus cells.


2020 ◽  
Vol 197 (6) ◽  
pp. 66-72
Author(s):  
T. I. KUZMINA

Abstract. Identification of the factors determining of donor’s oocyte competence to parthenogenetic development will allow developing an effective method for obtaining parthenotes to solve fundamental problems of regulating gene activity in ontogenesis, creating homozygous embryonic stem cell lines, improving the stages of cloning technology, and modeling of in vitro oocyte maturation media. The purpose of study is to evaluate the potencies of Bos taurus oocytes matured in different culture systems to cold shock-induced parthenogenesis. Methods. For oocyte maturation, culture systems of the following composition were used: 1 – TC-199 with 10 % fetal bovine serum (FBS), 50 μg/ml estradiol, 10 μg/ml luteinizing hormone, 10 μg/ml follicle-stimulating hormone; 2 – TC-199 with 10 % estrous serum of cows; 3 – TC-199 with 50 % fluid from follicles (Ø 3–8 mm); 4 – TC-199 with 50 % protein of follicular fluid (molecular weight of 65 kDa); 5 – TC-199 with 10 % FBS, 1×106 granulosa cells/ml medium; 6 – TC-199 with 10 % FBS and walls of follicles (Ø 6–8 mm); 7 – TC-199 with 10 % FBS, 1×106 granulosa cells/ml medium and walls of follicles (Ø 6–8 mm). After 24 hours of cultivation, the oocytes were activated by cold shock (exposure time 20 minutes, temperature 0…–4 °C. Results. The proportion of embryos at the stages of late morula and blastocysts from oocytes matured in system 7 was 45 % (58/129), which was significantly higher than in other systems: 1 – 28 % (39/141), P < 0.05; 2 – 31 % (42/137), P < 0.05; 3 – 25 % (33/133), P < 0.01; 4 – 18 % (25/139), P < 0.001; 5 – 31 % (41/132), P < 0.05; 6 – 33 % (43/129). The introduction of estradiol or structural components of antral follicles into the oocytes maturation medium contributed to an increase in the proportion of parthenotes at the preimplantation stages of development, including blastocysts, and a decrease in the level of degenerated embryos. Scientific novelty. A comparative morphological analysis of the potentials for parthenogenesis of bovine oocytes matured in various culture systems and activated by cold shock was carried out for the first time. Optimal systems for in vitro maturation of female gametes were proposed. Based on the analysis of the results, we recommend before induction to parthenogenesis bovine oocytes culture in media supplemented with 50 ng/ml estradiol or structural components of antral follicles producing estradiol.


2014 ◽  
Vol 62 (1) ◽  
pp. 117-124
Author(s):  
Clara Malo ◽  
Lydia Gil ◽  
Rafael Cano ◽  
Felisa Martinez ◽  
Noelia Gonzalez

In an effort to improve the quality of in vitro produced porcine embryos, the effect of progestagens — progesterone analogues — on the in vitro developmental competence of porcine oocytes was studied. A total of 1421 in vitro matured oocytes, from 4 replicates, were inseminated with frozen-thawed spermatozoa. Progestagens were added to late maturation and embryo cultures (10 IU/ml). Fertilisation success (pre-maturation, penetration, monospermy and efficiency) and nuclear maturation were evaluated. There were no differences among prematuration rates between groups (P = 0.221). Penetration rates were higher (P < 0.001) in the presence of progestagens (75.0%) as compared to the control (51.7%). However, no differences were observed in monospermy percentages (P = 0.246). The results indicated that supplementation with progestagens increased the efficiency of the in vitro fertilisation system (P < 0.001). An additional beneficial effect was observed in nuclear maturation with progestagens (P = 0.035). In summary, progestagen supplementation is an important factor to improve the in vitro fertilisation procedure.


Sign in / Sign up

Export Citation Format

Share Document