Is nitric oxide an autocrine modulator of bovine granulosa cell function?

1998 ◽  
Vol 10 (6) ◽  
pp. 471 ◽  
Author(s):  
G. Basini ◽  
M. Baratta ◽  
N. Ponderato ◽  
S. Bussolati ◽  
C. Tamanini

Nitric oxide (NO) is an important intra- and intercellular messenger controlling many biological processes. It is synthesized by NO synthases, which have been found also in granulosa cells. The present study examined whether NO is present in bovine follicular fluid and is produced by granulosa cells in culture. Secondly, it aimed to determine if NO affects the main parameters of granulosa cell function. The NO donor S-nitroso-L-acetyl-penicillamine (10 –3 , 10 –4 , 10 –5 М) was used to evaluate whether NO might influence steroidogenesis, proliferation and apoptosis in bovine granulosa cells collected from follicles divided according to their size in small (<5 mm) and large (>8 mm). The data demonstrate the presence of NO in follicular fluid and its production by granulosa cells in culture: the most active cells in producing NO are those from the small follicles, as confirmed by the NO levels in follicular fluid. This study also shows that NO donor significantly (P<0.001) inhibits progesterone (P4) and oestradiol 17β (E2) production by the granulosa cells from both kinds of follicle; moreover, the highest concentration of NO donor significantly (P<0.001) inhibits DNA fragmentation in all the cells whereas the lowest concentration stimulates (P<0.001) cellular apoptosis only in granulosa cells from large follicles. NO donor does not seem to modify cell proliferation. Taken together these data lead point to NO as a local modulator of granulosa cell function.

Endocrinology ◽  
2021 ◽  
Author(s):  
Pavine L C Lefèvre ◽  
Thomas C Nardelli ◽  
Weon-Young Son ◽  
Amy R Sadler ◽  
Dorothea F K Rawn ◽  
...  

Abstract Polybrominated diphenyl ethers (PBDEs), a major class of flame retardants incorporated into numerous consumer products, leach out into dust resulting in widespread exposure. There is evidence from in vitro and in vivo animal studies that PBDEs affect ovarian granulosa cell function and follicular development, yet human studies of their association with female infertility are inconclusive. Here, we tested the hypothesis that exposure to the PBDEs in follicular fluid is associated with dysregulation of gene expression in the mural and cumulus granulosa cells collected from women undergoing in vitro fertilization by intracytoplasmic sperm injection. The median concentration of the ∑10PBDEs detected in the follicular fluid samples (n=37) was 15.04 pg/g wet weight. RNA microarray analyses revealed that many genes were differentially expressed in mural and cumulus granulosa cells. Highest vs. lowest quartile exposure to the Σ10PBDEs or to two predominant PBDE congeners, BDE-47 or BDE-153, was associated with significant effects on gene expression in both cell types. Mural granulosa cells were generally more sensitive to PBDE exposure compared to cumulus cells. Overall, gene expression changes associated with BDE-47 exposure were similar to those for ∑10PBDEs but distinct from those associated with BDE-153 exposure. Interestingly, exposure to BDE-47 and ∑10PBDEs activated the expression of genes in pathways that are important in innate immunity and inflammation. To the best of our knowledge, this is the first demonstration that exposure to these environmental chemicals is associated with the dysregulation of pathways that play an essential role in ovulation.


2002 ◽  
Vol 14 (3) ◽  
pp. 141 ◽  
Author(s):  
G. Basini ◽  
G. L. Mainardi ◽  
S. Bussolati ◽  
C. Tamanini

This study was designed to investigate the presence of bioactive tumour necrosis factor-α (TNF-α) in bovine fluid collected from small (<5 mm) and large (>8 mm) follicles, as well as the production of the cytokine by the granulosa cells collected from the same type of follicles. Moreover, the effectiveness of 10, 1 and 0.1 ng mL-1 of human TNF-α (hTNF-α) in affecting the main parameters of granulosa cell function, progesterone (P4) and oestradiol-17β (E2) production, cell proliferation and apoptosis, was tested. In addition, the study aimed to determine whether the signalling mechanisms of TNF-α in these cells involve cAMP, nitric oxide or prostaglandin E2 (PGE2) and F2α (PGF2α). It emerged that bioactive TNF-α is present in follicular fluid from both types of follicles and can be measured in media conditioned by granulosa cells from large follicles. As for the effects of hTNF-α , it inhibits P4 production in cells from both types of follicles and stimulates E2 output in those from small follicles; it does not affect proliferation, but it stimulates granulosa cell apoptosis. Finally, the effects of hTNF-α on bovine granulosa cells are not mediated by nitric oxide or cAMP, as neither of these substances were affected by treatment with the cytokine; however, in some way, they could be mediated through PGE2 and PGF2α, the production of which was inhibited by TNF-α in cells from small follicles.


Reproduction ◽  
2010 ◽  
Vol 140 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Jennifer L Juengel ◽  
Lisa J Haydon ◽  
Brigitta Mester ◽  
Brian P Thomson ◽  
Michael Beaumont ◽  
...  

IGFs are known to be key regulators of ovarian follicular growth in eutherian mammals, but little is known regarding their role in marsupials. To better understand the potential role of IGFs in the regulation of follicular growth in marsupials, expression of mRNAs encoding IGF1, IGF2, IGF1R, IGF-binding protein 2 (IGFBP2), IGFBP4 and IGFBP5 was localized by in situ hybridization in developing ovarian follicles of the brushtail possum. In addition, the effects of IGF1 and IGF2 on granulosa cell function were tested in vitro. Both granulosa and theca cells synthesize IGF mRNAs, with the theca expressing IGF1 mRNA and granulosa cell expressing IGF2 mRNA. Oocytes and granulosa cells express IGF1R. Granulosa and theca cells expressed IGFBP mRNAs, although the pattern of expression differed between the BPs. IGFBP5 mRNA was differentially expressed as the follicles developed with granulosa cells of antral follicles no longer expressing IGFBP5 mRNA, suggesting an increased IGF bioavailability in the antral follicle. The IGFBP protease, PAPPA mRNA, was also expressed in granulosa cells of growing follicles. Both IGF1 and IGF2 stimulated thymidine incorporation but had no effect on progesterone production. Thus, IGF may be an important regulator of ovarian follicular development in marsupials as has been shown in eutherian mammals.


Reproduction ◽  
2012 ◽  
Vol 144 (3) ◽  
pp. 373-383 ◽  
Author(s):  
Isha Sharma ◽  
Dheer Singh

Conjugated linoleic acid (CLA) has drawn much interest in last two decades in the area ranging from anticancer activity to obesity. A number of research papers have been published recently with regard to CLA's additional biological functions as reproductive benefits. However, not much is known how this mixture of isomeric compounds mediates its beneficial effects particularly on fertility. In this study, we demonstrated the cross talk between downstream signaling of CLA and important hormone regulators of endocrine system, i.e. FSH and IGF1, on buffalo granulosa cell function (proliferation and steroidogenesis). Experiments were performed in primary serum-free buffalo granulosa cell culture, where cells were incubated with CLA in combination with FSH (25 ng/ml) and IGF1 (50 ng/ml). Results showed that 10 μM CLA inhibits FSH- and IGF1-induced granulosa cell proliferation; aromatase,GATA4, andIGF1mRNA; and estradiol-17β production. Western blot analysis of total cell lysates revealed that CLA intervenes the IGF1 signaling by decreasing p-Akt. In addition, CLA was found to upregulate peroxisome proliferator-activated receptor-gamma (PPARG) and phosphatase and tensin homolog (PTEN) level in granulosa cells. Further study using PPARG- and PTEN-specific inhibitors supports the potential role of CLA in granulosa cell proliferation and steroidogenesis involving PPARG, PTEN, and PI3K/Akt pathway.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sai Kumar ◽  
Meeti Punetha ◽  
Bosco Jose ◽  
Jaya Bharati ◽  
Shivani Khanna ◽  
...  

AbstractBMPs are multifunctional growth factors implicated in regulating the ovarian function as key intra-ovarian factors. Biological effects of BMPs are mediated through binding with membrane bound receptors like BMPR-IB and initiating downstream Smad signaling pathway. FecB mutation, regarded as a loss of function mutation in the BMPR-IB gene was identified in certain sheep breeds having high fecundity. Similar type of fecundity genes in goats have not been discovered so far. Hence, the current study was designed to investigate the effects of BMPR-IB gene modulation on granulosa cell function in goats. The BMPR-IB gene was knocked out using CRISPR-Cas technology in granulosa cells and cultured in vitro with BMP-4 stimulation for three different durations In addition, the FecB mutation was introduced in the BMPR-IB gene applying Easi-CRISPR followed by BMP-4/7 stimulation for 72 h. Steroidogenesis and cell viability were studied to explore the granulosa cell function on BMPR-IB gene modulation. BMPRs were found to be expressed stage specifically in granulosa cells of goats. Higher transcriptional abundance of R-Smads, LHR and FSHR indicating sensitisation of Smad signaling and increased gonadotropin sensitivity along with a significant reduction in the cell proliferation and viability was observed in granulosa cells upon BMPR-IB modulation. The inhibitory action of BMP-4/7 on P4 secretion was abolished in both KO and KI cells. Altogether, the study has revealed an altered Smad signaling, steroidogenesis and cell viability upon modulation of BMPR-IB gene in granulosa cells similar to that are documented in sheep breeds carrying the FecB mutation.


Reproduction ◽  
2007 ◽  
Vol 134 (2) ◽  
pp. 293-306 ◽  
Author(s):  
Sara L Al-Musawi ◽  
Richard T Gladwell ◽  
Philip G Knight

The aims were to examine ovarian expression of bone morphogenetic protein (BMP) ligands/receptor mRNAs in the chicken and to test the hypothesis that theca-derived BMP(s) modulates granulosa cell function in a paracrine manner. RT-PCR revealed expression of multiple BMPs in granulosa and theca cells from prehierarchical and preovulatory follicles with greater expression in theca cells; both cell types expressed BMP receptors-IA, -IB and -II consistent with tissue responsiveness. Preovulatory granulosa cells (F1, F2 and F3/4) were cultured with BMP-6 (expressed by theca but not granulosa) in the presence/absence of LH, FSH or 8-Br-cAMP. BMP-6 increased ‘basal’ and gonadotrophin-induced inhibin-A and progesterone secretion by each cell type but did not enhance the effect of 8-Br-cAMP. This indicates that the observed synergism between BMP-6 and gonadotrophin might involve BMP-induced up-regulation of gonadotrophin receptors. In support of this, BMP-6 alone increased LH-receptor (LHR) mRNA in F1 cells and FSH-receptor (FSHR) mRNA in F1, F2 and F3/4 cells. BMP-6 also enhanced LH/FSH-induced LHR transcript amount in each cell type but did not raise FSHR transcript amounts above those induced by BMP-6 alone. To further explore BMP-6 action on inhibin-A secretion, we quantified inhibin/activin subunits (α, βA, βB) mRNAs. Consistent with its effect on inhibin-A secretion, BMP-6 enhanced ‘basal’ expression of α- and βA-subunit mRNA in F1, F2 and F3/4 cells, and βB-subunit mRNA in F3/4 cells. BMP-6 markedly enhanced FSH/LH-induced expression of α-subunit in all follicles and FSH-induced βA-subunit in F2 and F3/4 follicles but not in F1 follicles. Neither BMP-6 alone, nor FSH/LH alone, affected ‘basal’ βB mRNA abundance. However, co-treatment with gonadotrophin and BMP-6 greatly increased βB-subunit expression, the response being lowest in F1 follicles and greatest in F3/4 follicles. Collectively, these results support the hypothesis that intraovarian BMPs of thecal origin have a paracrine role in modulating granulosa cell function in the chicken in a preovulatory stage-dependent manner.


Reproduction ◽  
2009 ◽  
Vol 137 (5) ◽  
pp. 843-855 ◽  
Author(s):  
Martha Z Carletti ◽  
Lane K Christenson

LH acts on periovulatory granulosa cells by activating the PKA pathway as well as other cell signaling cascades to increase the transcription of specific genes necessary for ovulation and luteinization. Collectively, these cell signaling responses occur rapidly (within minutes); however, presently no high throughput studies have reported changes before 4 h after the LH surge. To identify early response genes that are likely critical for initiation of ovulation and luteinization, mouse granulosa cells were collected before and 1 h after hCG. Fifty-seven gene transcripts were significantly (P<0.05) upregulated and three downregulated following hCG. Twenty-four of these transcripts were known to be expressed after the LH/hCG surge at later time points, while 36 were unknown to be expressed by periovulatory granulosa cells. Temporal expression of several transcripts, including the transcription factorsNr4a1,Nr4a2,Egr1,Egr2,Btg1, andBtg2, and the epidermal growth factor (EGF)-like ligandsAregandEreg, were analyzed by quantitative RT-PCR, and their putative roles in granulosa cell function are discussed. Epigen (Epgn), another member of the family of EGF-like ligands was identified for the first time in granulosa cells as rapidly induced by LH/hCG. We demonstrate thatEpgninitiates cumulus expansion, similar to the other EGF-receptor ligandsAregandEreg. These studies illustrate that a number of changes in gene expression occurin vivoin response to LH, and that many of the differentially expressed genes are transcription factors that we would predict in turn modulate granulosa cell gene expression to ultimately impact the processes of ovulation and luteinization.


Zygote ◽  
1996 ◽  
Vol 4 (04) ◽  
pp. 317-321 ◽  
Author(s):  
Barbara C. Vanderhyden

Investigations of strains of mice defective in germ cell development have revealed the importance of oocytes for the initial stages of folliculogenesis (Pellaset al., 1991; Huanget al., 1993). Various aspects of follicular development are dependent upon and/or influenced by the presence of oocytes, including granulosa cell proliferation (Vanderhydenet al., 1990, 1992) and cumulus expansion (Buccioneet al., 1990; Salustriet al., 1990; Vanderhydenet al., 1990; Vanderhyden, 1993). We are investigating the possibility that oocytes influence one of the primary functions of granulosa cells: steroidogenesis. In many species, granulosa cells removed from preovulatory follicles luteinisein vitro(Channinget al., 1982), presumably due to loss of contact with follicular luteinisation inhibitory factor(s). Indeed, follicular fluid can prevent granulosa cell luteinisationin vitro(Ledwitz-Rigbyet al., 1977). Follicular fluid, however, may simply be the medium for transport of factors secreted by oocytes to regulate granulosa cell activities.


2017 ◽  
Vol 29 (12) ◽  
pp. 2305 ◽  
Author(s):  
Giuseppina Basini ◽  
Simona Bussolati ◽  
Roberta Ciccimarra ◽  
Francesca Grasselli

Melatonin exerts well-known reproductive effects, mainly acting on hypothalamic gonadotrophin-releasing hormone release. More recent data suggest that melatonin acts directly at the ovarian level, even if, at present, these aspects have been only partly investigated. Swine follicular fluid contains melatonin and its concentration is significantly reduced during follicular growth. Therefore, the present study was undertaken to examine the effects of melatonin, used at physiological concentrations, on cultured swine granulosa cells collected from small (<3 mm) and large (>5 mm) follicles on the main parameters of granulosa cell function such as proliferation and steroidogenesis, namely oestradiol 17β and progesterone (P4) production. Moreover, the effects of melatonin on superoxide anion and nitric oxide (NO) generation by swine granulosa cells were also investigated. Finally, since angiogenesis is crucial for follicle growth, the effects of melatonin on new vessel growth were studied. Collected data indicate that melatonin interferes with cultured granulosa cell proliferation and steroidogenesis, specifically in terms of P4 production and NO output. In addition, the events of physiological follicular angiogenesis were stimulated by melatonin as evidenced by angiogenesis bioassay. Therefore, we suggest that physiological melatonin concentrations could potentially be involved in local modulation of swine ovarian follicle function.


2001 ◽  
pp. 303-308 ◽  
Author(s):  
M Masuda ◽  
T Kubota ◽  
T Aso

BACKGROUND: We have previously demonstrated that nitric oxide (NO) inhibits steroidogenesis via a cGMP-independent process, by inhibiting P450 aromatase activity in porcine granulosa cells (PGCs) derived from medium-sized (3--5 mm) ovarian follicles (M-PGC). OBJECTIVE: To determine whether the NO/NO synthase (NOS) system exerts any significant effects on steroidogenesis in PGCs derived from small follicles (<3 mm) (S-PGC) in comparison with those derived from medium follicles. DESIGN AND METHODS: PGCs, namely S-PGC and M-PGC, were incubated with the NO donor, NOC18, and a competitive blocker of NOS, N(3)-monomethyl-l-arginine (LNMMA), either alone or in the presence of FSH (200 ng/ml) or hCG (5 IU/ml). RESULTS: NOC18 significantly (P<0.01--0.001) suppressed basal (unstimulated) and gonadotropin-stimulated estradiol (E2) release from both S-PGC and M-PGC in a 2-h culture. NOC18 significantly (P<0.01--0.001) decreased basal and gonadotropin-stimulated progesterone release from S-PGC, but not from M-PGC. In addition, NOC18 significantly (P<0.05--0.001) inhibited aromatase activity in S-PGC. LNMMA had a significantly (P<0.01--0.001) stimulatory effect on the basal release of E2 and progesterone from M-PGC; however, it had no significant effect on basal steroidogenesis in S-PGC in a 24-h culture. In the presence of gonadotropin, LNMMA significantly (P<0.01--0.001) stimulated the release of E2 and progesterone from both S- and M-PGC, and this stimulatory effect was weaker in S-PGC than in M-PGC. These results demonstrate that NO inhibits E2 secretion by directly inhibiting the aromatase activity in S-PGC, as in M-PGC. It has been shown that the NO system suppresses the differentiation of S-PGC; however, the extent of suppression decreased with the progression of follicular growth. In addition, the activity of NOS in S-PGC was weaker than that in M-PGC. CONCLUSION: We strongly suggest that the NO/NOS system in PGC regulates steroidogenesis differently during different phase of follicular development.


Sign in / Sign up

Export Citation Format

Share Document