45 EFFECT OF OSMOLARITY IN CULTURE MEDIUM ON THE PRE-IMPLANTATION DEVELOPMENT OF PORCINE NT AND IVF EMBRYOS

2007 ◽  
Vol 19 (1) ◽  
pp. 141
Author(s):  
I. S. Hwang ◽  
H. J. Moon ◽  
J. H. Shim ◽  
M. R. Park ◽  
D. H. Kim ◽  
...  

In vitro production of the pig embryo is very important as an initial step to improve its application in biotechnology. The in vitro production system for pig embryos, however, has been plagued by the high incidence of polyspermy and poor embryo quality. The present study was conducted to examine the relationship between apoptosis and osmolarity of culture medium in pre-implantation development of porcine NT and IVF embryos. Oocytes were aspirated from ovaries collected from a local abattoir, and then matured in TCM-199 for 40–44 h. Fresh semen was diluted and equilibrated at 16�C. The final concentration of motile spermatozoa was adjusted to 5 � 105 cells/mL in fertilization medium. Fetal fibroblasts were prepared from a 35-day-old porcine fetus for use as donor cells. The NT and IVF embryos were cultured in PZM-3 supplemented with 0.05 M sucrose or a final concentration of 138 mM NaCl (280–320 mOsmol) for the first 2 days, and then cultured in PZM-3 (250–270 mOsmol) for the remaining days. For the control, NT and IVF embryos were cultured in PZM-3 for whole culture period. After 6 days of culture, the developmental ability of embryos, total cell numbers, ratio of ICM/TE, and apoptosis of cells in blastocysts were examined. The developmental rate to the blastocyst stage of NT embryos was significantly higher (P < 0.05) in the sucrose and NaCl groups than in the control [14.7% (21/153) and 21.7% (34/154) vs. 11.5% (18/152), respectively]. Also, the developmental rate to the blastocyst stage after IVF was slightly higher in embryos cultured in the medium supplemented with NaCl than in the control group [21.8% (49/235) and 26.4% (61/237) vs. 18.9% (44/247)]. For apoptosis, both NT and IVF blastocysts produced in the sucrose and NaCl groups showed slightly lower frequency of apoptosis compared to that of the control (2.2% and 2.8% vs. 3.1% for NT; 0.9% and 0.7% vs. 1.1% for IVF). These studies suggest that the high osmolarity in the early embryo culture stage could enhance the in vitro development of both porcine NT and IVF embryos to the blastocyst stage and could reduce the apoptosis of cells.

1996 ◽  
Vol 5 (5) ◽  
pp. 509-514 ◽  
Author(s):  
Kristiina Bredbacka ◽  
Peter Bredbacka

In this study we evaluated the use of a chemically defined medium in the production of blastocysts from bovine oocytes fertilized in vitro. As culture medium we used CRI-PVP, a modification of CRlaa medium with bovine serum albumin replaced by polyvinylpyrrolidone. After 168 h of culture (192 h after insemination) 8.7%, 10.5 and 12.8% of the cleaved embryos developed to the blastocyst stage in the presence of 0, 2 or 200 nM insulin, respectively. The supplementation of 200 nM insulin tended to increase cell numbers in morulae and blastocysts (P=0.10). It is concluded that CRI-PVP can be used as a chemically defined medium in the production of blastocysts from bovine 1-cell embryos. However, further modifications are needed, and the insulin concentrations used may be below the optimum for blastocyst production.


2017 ◽  
Vol 20 (1) ◽  
pp. 95-101 ◽  
Author(s):  
A.E. Abdelkhalek ◽  
Sh.A. Gabr ◽  
W.A. Khalil ◽  
Sh.M. Shamiah ◽  
L. Pan ◽  
...  

Abstract Application of assisted reproductive technology in camelidea, such as artificial insemination (AI) and embryo transfer, has been slow in comparison to that for other livestock species. In Egypt, there are few attempts to establish in vitro maturation (IVM) and fertilization (IVF) techniques in dromedary camel. The present study was carried out to produce Sudanese camel embryos using in vitro matured oocytes and epididymal spermatozoa. Dromedary camel ovaries were collected from abattoirs and then, the oocytes were aspirated from all the visible follicles on the ovarian surface (~2-8 mm in a diameter). Meanwhile, Fetal Dromedary Camel Serum (FDCS) was obtained from camel fetuses after slaughtering. Thereafter, only Cumulus Oocyte Complexes (COCs) were matured in vitro in the Tissue Culture Medium (TCM-199) complemented with 10% FDCS. Spermatozoa required for in vitro fertilization were collected from testes (epididymal cauda) of the slaughtered camel bulls. The results clearly showed that the maturation rate of oocytes at metaphase II was about 59.5% while the fertilization rate was around 70.4%. Intriguingly, the embryo rates determined were 13.1%, in 2-cell; 0.0%, in 4-cell; 34.7%, in 8-16% cell; 39.1%, in morula and 13.1% in a blastocyst stage. This study represented a successful in vitro production of Sudanese dromedary camel embryos from epididymal sperm cells and in vitro matured oocytes recovered from slaughtered camels.


2021 ◽  
Vol 8 (02) ◽  
pp. e62-e68
Author(s):  
Jeeta Sarkar ◽  
Nirmalya Banerjee

AbstractSteroid alkaloid solasodine is a nitrogen analogue of diosgenin and has great importance in the production of steroidal medicines. Solanum erianthum D. Don (Solanaceae) is a good source of solasodine. The aim of this study was to evaluate the effect of different cytokinins on the production of secondary metabolites, especially solasodine in the in vitro culture of S. erianthum. For solasodine estimation, field-grown plant parts and in vitro tissues were extracted thrice and subjected to high-performance liquid Chromatography. Quantitative analysis of different secondary metabolites showed that the amount was higher in the in vitro regenerated plantlets compared to callus and field-grown plants. The present study critically evaluates the effect of the type of cytokinin used in the culture medium on solasodine accumulation in regenerated plants. The highest solasodine content (46.78±3.23 mg g-1) was recorded in leaf extracts of the in vitro grown plantlets in the presence of 6-γ,γ-dimethylallylamino purine in the culture medium and the content was 3.8-fold higher compared to the mother plant.


Blood ◽  
1974 ◽  
Vol 44 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Allan J. Erslev

Abstract Normal rabbits exposed to 0.4 atmospheric pressure for 3 hr will generate about 40-60 U of erythropoietin during a subsequent 3-hr period. If the kidneys were removed from 3-hr hypoxic animals, washed carefully, and perfused for 3 hr by recirculation with a serum-tissue culture mixture, each kidney generated about 14 U of erythropoietin in vitro. Perfusion of normal kidneys did not result in the production of erythropoietin, and only small amounts were generated if the perfusate contained Puromycin. Three-hour hypoxic kidneys perfused for 3 hr with a serum-free tissue culture medium were found to generate about 8 U of erythropoietin per kidney and similar kidneys perfused with saline about 1 U. These results indicate that erythropoietin is synthesized by kidney tissue and not produced by enzymatic activation of a plasma substrate.


2006 ◽  
Vol 18 (2) ◽  
pp. 256
Author(s):  
R. Simões ◽  
M. P. Milazzotto ◽  
C. Yamada ◽  
W. B. Feitosa ◽  
A. R. S. Coutinho ◽  
...  

Production of transgenic mouse embryos by microinjection is a well established and successful technique. However, when microinjection protocols were used for bovine, the amount of the oocyte lipid content did not allow the production of bovine transgenic embryos. Sperm-mediated gene transfer (SMGT) is an alternative for this species because it has lower cost and does not require microinjection handling. One of the procedures to introduce exogen DNA into oocytes is by means of sperm capacitated with calcium ionophore (CaI). The aim of this work was to evaluate different CaI concentrations ([CaI]), sperm incubation times with CaI (tCa), and incubation times of sperm capacitated with DNA (tDNA) (EYFP; Clontech, Palo Alta, CA, USA) to establish a satisfactory method for IVP of bovine transgenic embryos. Slaughterhouse oocytes with compact cumulus and uniform ooplasm were in vitro maturated in TCM-199 medium + 10% FCS + FSH + hCG + estradiol (E2) + piruvate + gentamicin under 5% CO2 in air, at 39�C and high humidified atmosphere for 24 h. Semen was thawed in a water bath at 37�C for 30 s and separated by Percoll gradient (45/90%) at 600g for 30 min. After this procedure, sperm cells were washed in TALP-semen medium by centrifugation at 200g for 5 min at room temperature. Supernatant was removed and capacitation (5 � 106 spermatozoa/group) was induced with CaI (250 nM or 500 nM for 1 or 5 min). Capacitated sperm cells were incubated with 500 ng/mL DNA for 1 or 2 h. Nontreated spermatozoa were used as control group. Sperm cells (1 � 105) were used to inseminate 20 oocytes/90 mL microdroplets for 18 h. The presumptive zygotes were co-cultured in SOFaa medium with a granulosa cell monolayer under high humidified atmosphere, at 39�C and 5% CO2 in air. Blastocyst rates were analyzed by ANOVA. Independent variables were replicate, [CaI], tCa, tDNA, and the double and triple interactions among the last three variables; when appropriate, means were compared by orthogonal contrasts. There was [CaI] � tCa � tDNA interaction for blastocyst rate (P < 0.02). Treatments with 250 nM ([CaI]), 5 min (tCaI), and 1 h (tDNA) or 500 nM ([CaI]), 1 min (tCaI), and 1 h (tDNA) resulted in 36.1% and 37.4% blastocyst rates, respectively, similar to the control group (30.5%; P > 0.4). These results demonstrated that it is possible to capacitate spermatozoa with CaI to produce transgenic embryos, without alteration of blastocyst rate. This work was supported by FAPESP 03/08542-5 and 03/07456-8.


2015 ◽  
Vol 27 (1) ◽  
pp. 205 ◽  
Author(s):  
E. Mullaart ◽  
F. Dotinga ◽  
C. Ponsart ◽  
H. Knijn ◽  
J. Schouten

Improving the efficiency of the in vitro production (IVP) process is very important because it results in more embryos to be used in breeding programs or as commercial service. At CRV, a culture medium consisting of SOF with amino acids and BSA is used. In the past, richer culture media were used with 10% fetal calf serum combined with BRL cell co-culture. Although the efficiency of the IVP process of these media was good, these rather high serum concentrations were quite often related to large offspring syndrome (LOS). The switch to a culture system without serum resulted in a significant reduction in LOS but also in a reduction of embryo yield. The aim of the present study was to investigate the effect of adding low amounts of serum to the culture medium on efficiency of embryo production. Immature cumulus-oocyte complexes (COC) were recovered from ovaries 6 to 8 h upon slaughter. The COC were matured in vitro in TCM199/FCS/LH/FSH supplemented with cysteamine (0.1 mM). Subsequently, matured oocytes were fertilised with frozen-thawed gradient-separated semen and further cultured for 7 days in SOFaaBSA. The SOF medium contained either 0 (control), 0.1, 0.5, or 1.0% oestrus cow serum (ECS). Embryos development was scored at Day 7. Three replicates were performed and results were analysed by chi-square analyses. The results clearly show that adding ECS significantly improved embryo production (Table 1). Interestingly, already very low amounts (0.1%) of serum gave a significant increase in embryo percentage. In conclusion, addition of very low amounts of ECS (0.1%) is beneficial for embryo production, resulting in significantly higher embryo production (from 19 to 27%). In a subsequent field trial with OPU-derived embryos, the effect of addition of 0.1% ECS on birth weight (LOS) of the calves has to be investigated. Table 1.Percentage of blastocysts at Day 7 after culture in SOF medium with different amounts of serum


2007 ◽  
Vol 19 (1) ◽  
pp. 147
Author(s):  
H. T. Lee ◽  
J. M. Jang ◽  
S. H. Lee ◽  
M. K. Gupta

In vitro production of cloned porcine embryos by somatic cell nuclear transfer (SCNT) has become routine in several laboratories but the efficiency and quality of the resultant blastocysts remains sub-optimal. Cloned porcine blastocysts show low cell number, high fragmentation rate, and apoptosis which results in lower pregnancy rates upon embryo transfer. Earlier we reported that supplementation of culture media with amino acids benefit pre-implantation embryo development of in vivo- as well as in vitro-fertilized porcine embryos (Koo et al. 1997 Theriogenology 48, 791–802). This study evaluated how exogenous amino acids could affect pre-implantation development and quality of cloned or parthenogenetic porcine embryos. The effects of commercially available amino acids, referred to as Eagle&apos;s non-essential amino acids (NEAA), added or not added (control) to NCSU23 medium containing fatty acid-free BSA were studied. Oocytes recovered from abattoir-derived prepubertal porcine ovaries were matured in vitro and parthenogenetically activated (PA) or nuclear-transferred with fetal fibroblasts (SCNT), as described earlier (Uhm et al. 2000 Mol. Reprod. Dev. 57, 331–337). At 168 h post-activation, blastocysts were harvested for assessment of embryo quality by TUNEL labeling, Hoechst 33342 staining, and gene expression analysis. Results showed that, in the PA group, the cleavage rate was not affected by the supplementation of NEAA. However, the blastocyst rate was significantly improved when NEAA was present in the medium compared to that of the control group (38.9 &plusmn; 0.3 vs. 27.5 &plusmn; 0.3&percnt;, respectively) throughout the culture period. The supplementation during the pre-compaction period alone gave better results than during the post-compaction period alone (59.5 &plusmn; 0.9 vs. 33.4 &plusmn; 0.3&percnt;, respectively). In the SCNT group, however, both cleavage (73.6 &plusmn; 0.2 vs. 64.2 &plusmn; 0.4&percnt;) and blastocyst rate (18.7 &plusmn; 0.2 vs. 13.8 &plusmn; 0.3&percnt;) were improved by NEAA supplementation. Furthermore, these blastocysts had higher hatching ability (30.0 &plusmn; 1.8 vs. 14.6 &plusmn; 4.9&percnt;) than those of control group (P &lt; 0.05). Supplementation of NEAA also increased the mean nuclei number of PA-derived (76.1 &plusmn; 4.9 vs. 66.5 &plusmn; 3.3) as well as SCNT-derived (43.1 &plusmn; 2.6 vs. 31.8 &plusmn; 1.9) blastocysts and reduced the time during which blastocysts formed. TUNEL assay revealed that incidence of nuclear fragmentation and apotosis was reduced by NEAA. Real-time qRT-PCR for Bax and Bcl-XL transcripts revealed that the relative abundance of Bax was reduced while that of Bcl-XL was increased. These effects were more pronounced when NEAA was present during the pre-compaction period alone. Thus, our data suggest that NEAA improves the yield and quality of cloned porcine embryos by enhancing blastocyst expansion and positively modulating the total cell number and apoptosis. These data may have implications for understanding the nutritional needs of cloned porcine embryos produced in vitro and for optimizing the composition of culture media to support their development. This work was supported by the Research Project on the Production of Bio-Organs (No. 200503030201), Ministry of Agriculture and Forestry, Republic of Korea.


2016 ◽  
Vol 28 (2) ◽  
pp. 256
Author(s):  
L. M. Vieira ◽  
G. A. Bó ◽  
R. J. Mapletoft

In vitro embryo production (IVP) is an important tool to enhance genetic gain in cattle. However, oocyte quality is a limiting factor for the success of IVP programs in high-producing donors. A series of studies using protocols for follicular wave synchronization and superstimulation before ovum pickup were performed to improve the efficiency of ovum pickup and in vitro production in dairy cattle. The first study evaluated superstimulation with FSH (Folltropin-V®) before ovum pickup in lactating (n = 15) and non-lactating (n = 15) Holstein donors in a crossover design. Cows underwent synchronization of follicle wave emergence (FWE) and at the expected time of FWE, the FSH group received a total dosage of 200 mg of FSH in 4 decreasing doses 12 h apart; controls received no FSH, and ovum pickup was conducted 72 h after the expected FWE in all cows. The FSH-treated cows had a higher (P < 0.01) percentage of medium-sized follicles (6 to 10 mm) at the time of ovum pickup (55.1%) than control cows (20.8%) as well as lower cumulus‐oocyte complexes (COC) recovery rates (60.0 v. 69.8%, respectively; P = 0.002). However, FSH-treated cows had a higher blastocyst production rate (34.5 v. 19.8%; P < 0.01) and more transferable embryos per ovum pickup session (3.0 ± 0.5 v. 1.8 ± 0.4; P = 0.02). Subsequent trials evaluated plasma FSH profiles in 23 heifers and in vitro production following ovum pickup in 90 non-lactating Holstein donors superstimulated with a single IM injection of FSH in 0.5% hyaluronan (HA; MAP-5®, 50 mg). Controls received no treatment, while the F200 group received 200 mg of FSH in 4 decreasing doses 12 h apart. The F200HA and F300HA groups received 200 or 300 mg of FSH in 5 or 7.5 mL, respectively, of 0.5% HA by a single IM injection. Circulating FSH area under curve (AUC) in FSH-treated animals was greater than in the control group (P = 0.02). Although the AUC for F200 group did not differ from HA groups (P = 0.56), the total period of time plasma FSH levels were elevated was greater than in the HA groups (P < 0.01). In the IVP trial, FSH-treated cows had a greater proportion of medium-sized (6–10 mm) follicles than controls (P < 0.001). Also, numbers of follicles (P = 0.01) retrieved (control: 13.1 ± 1.0; F200: 16.5 ± 1.2; F200HA: 19.5 ± 2.1; F300HA: 15.4 ± 1.4; P = 0.01) and blastocysts produced per ovum pickup session (control: 2.4 ± 0.5; F200: 3.7 ± 0.7; F200HA: 4.7 ± 0.7; F300HA: 3.1 ± 0.6; P = 0.06) were greater in cows receiving FSH, regardless of treatment. Cows in the F200HA group had a greater recovery rate (P = 0.009), number of COC cultured (P = 0.04), and blastocysts per ovum pickup session (P = 0.06) than cows in the F300HA group. In conclusion, superstimulation of Holstein donors before ovum pickup increased the efficiency of in vitro production. Additionally, a single IM dose of FSH in 0.5% HA resulted in similar plasma FSH profiles to twice-daily FSH treatment. Non-lactating donors treated with FSH produced more embryos per ovum pickup session regardless of FSH treatment. Lastly, all in vitro-produced endpoints were greater following a single dose of 200 mg of FSH in 0.5% HA than 300 mg of FSH in 0.5% HA.


2004 ◽  
Vol 16 (2) ◽  
pp. 15 ◽  
Author(s):  
Matthew B. Wheeler ◽  
Sherrie G. Clark ◽  
David J. Beebe

Several modifications have been made to in vitro production (IVP) systems to allow more efficient production of viable porcine embryos. Although in vitro production of pig embryos has been studied for over 30 years, the overall blastocyst production rate remains low. The low blastocyst rate is due to several factors, including polyspermic oocyte penetration, low rate of male pronucleus formation and less than optimal in vitro culture systems. These conditions are all inherent problems in porcine IVP and many of the mechanisms involved remain unknown. Considerable research has examined culture medium and the techniques used during the various stages of in vitro production. However, changes to the physical culture system used during IVF have remained unchanged until recently. The present paper will summarise selected developments in fertilisation and embryo culture media composition and focus on the development of modified equipment to improve the conditions used during the IVP of porcine oocytes and embryos.


2003 ◽  
Vol 15 (4) ◽  
pp. 249 ◽  
Author(s):  
J. R. Herrick ◽  
M. L. Conover-Sparman ◽  
R. L. Krisher

The development of efficient systems for in vitro production of porcine embryos has been hampered by a high incidence of polyspermic fertilization. A recently developed single-medium system for porcine in vitro maturation (IVM), IVF and in vitro embryo culture (IVC) (Purdue Porcine Medium; PPM) was modified with elevated bicarbonate (44 mM) and reduced calcium concentrations (1.7 mM) for IVF (PPMfert.2). Oocyte penetration was evaluated after maturation in PPMmat (0.5 mg mL−1 hyaluronan, 0.6 mM cysteine, 10 ng mL−1 epidermal growth factor (EGF), 0.1 U mL−1 porcine LH and FSH, and 1 × Minimal Essential Medium (MEM) vitamins) and fertilization (5 h with 5 × 105 sperm mL−1) in either PPMfert.2 or mTBM (20 mM Tris, 0.0 mm bicarbonate, 7.5 mM calcium). Embryonic development (cleavage and blastocyst stages) was assessed after culture in PPM1 and PPM2. Although penetration was lower in PPMfert.2 (69.9%) compared with mTBM (83.9%), 48.8% of penetrated oocytes were fertilized normally in PPMfert.2 compared with only 27.8% normal fertilization in mTBM. More oocytes cleaved in PPMfert.2 (77.9% v. 53.7%), but development to the blastocyst stage was not different between treatments (14.1% v. 14.3%). Further work is needed to improve embryonic development, but reduced polyspermic penetration is an important step in the optimization of the PPM system for in vitro porcine embryo production.


Sign in / Sign up

Export Citation Format

Share Document