191 RISK ASSESSMENT OF BISPHENOL A, AN ENDOCRINE DISRUPTOR, VIA PROLIFERATIVE EFFECT ON THE GROWTH OF ESTROGEN-DEPENDENT OVARIAN CANCER IN CELLULAR AND ANIMAL MODELS

2013 ◽  
Vol 25 (1) ◽  
pp. 244
Author(s):  
K.-A. Hwang ◽  
K.-C. Choi

One of estrogens in the body, 17β-oestradiol (E2), is a pleiotropic hormone that regulates the growth and differentiation of many tissues and also acts as a mitogen that promotes the development and proliferation of hormone-responsive cancers such as breast and ovarian carcinomas. Xenoestrogens are chemical compounds that imitate oestrogen in living organisms and are classified as a type of endocrine-disrupting chemical (EDC). Bisphenol A (BPA) is a widely used industrial compound, and also known as an EDC and especially a xenoestrogen. In this study, we examined the effect of E2 or BPA on the cell growth of BG-1 ovarian cancer cells in vivo and in vitro. In the cell proliferation assay in vitro, E2 or BPA increased the growth of the BG-1 ovarian cancer cells expressing oestrogen receptors (ER). Their proliferation activity was reversed by the treatment of ICI 182 780, a well-known antagonist of ER, which demonstrates that the cell proliferation by E2 or BPA is mediated by ER and BPA certainly acts as a xenoestrogen in the BG-1 ovarian cancer cells. Clearly, E2 and BPA increased the expression of cyclin D1, a factor responsible for the G1/S cell cycle transition. These reagents also decreased the expression of p21, a potent cyclin-dependent kinase (CDK) inhibitor that arrests the cell cycle in the G1 phase. As a result, they promoted the proliferation of BG-1 cells via upregulation of the cell cycle progression. In mice xenograft models transplanted with BG-1 ovarian cancer cells, E2 or BPA administration significantly induced the tumour proliferation compared with vehicle (corn oil) treatment for 10 weeks, which was identified by the measurement of tumour volume and histological analysis on tumour tissues such as hematoxylin and eosin (H&E) staining and BrdU incorporation assay. Taken together, as an EDC having a xenoestrogenic activity, BPA was demonstrated to have a risk of tumour proliferation in oestrogen-dependent cancers such as ovarian cancer. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) of government of Korea (no. 2011-0015385).

Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769430 ◽  
Author(s):  
Zhenhua Du ◽  
Xianqun Sha

Curcumin is a natural agent that has ability to dampen tumor cells’ growth. However, the natural form of curcumin is prone to degrade and unstable in vitro. Here, we demonstrated that demethoxycurcumin (a curcumin-related demethoxy compound) could inhibit cell proliferation and induce apoptosis of ovarian cancer cells. Moreover, IRS2/PI3K/Akt axis was inactivated in cells treated with demethoxycurcumin. Quantitative real-time reverse transcription polymerase chain reaction demonstrated that miR-551a was down-regulated in ovarian cancer tissues and ovarian cancer cell lines. Over-expression of miR-551a inhibited cell proliferation and induced apoptosis of ovarian cancer cells, whereas down-regulation of miR-551a exerted the opposite function. Luciferase assays confirmed that there was a binding site of miR-551a in IRS2, and we found that miR-551a exerted tumor-suppressive function by targeting IRS2 in ovarian cancer cells. Remarkably, miR-551a was up-regulated in the cells treated with demethoxycurcumin, and demethoxycurcumin suppressed IRS2 by restoration of miR-551a. In conclusion, demethoxycurcumin hindered ovarian cancer cells’ malignant progress via up-regulating miR-551a.


2020 ◽  
Author(s):  
Qin Xu ◽  
Bo Deng ◽  
Manlin Li ◽  
Yang Chen ◽  
Li Zhuan

Abstract Objective: circular RNAs (circRNAs) have been reported to be essential regulators of multiple malignant cancers. However, the functions of circRNAs in ovarian cancer need to be further explored. The aim of our study is to explore the role of circRNA-UBAP2 in ovarian cancer and its mechanism. Results: circRNA-UBAP2 was upregulated in ovarian cancer tissues and cell lines. Knockdown of circRNA-UBAP2 inhibited cell proliferation and promoted cell apoptosis, but circRNA-UBAP2 overexpressed got opposite results. In addition, circRNA-UBAP2 targeted miR-382-5p and downregulated its expression, PRPF8 was a target gene of miR-382-5p. Furthemore, circRNA-UBAP2/miR-382-5p/PRPF8 axis affected the proliferation, apoptosis and cell cycle of ovarian cancer through the mechanism of competing endogenous RNAs (ceRNA). Conclusion: circRNA-UBAP2 acted as a ceRNA to sponged miR-382-5p, increased the expression level of PRPF8, and prompted proliferation and inhibited apoptosis in ovarian cancer cells.


2020 ◽  
Author(s):  
Qin Xu ◽  
Bo Deng ◽  
Manlin Li ◽  
Yang Chen ◽  
Li Zhuan

Abstract Objective: circular RNAs (circRNAs) have been reported to be essential regulators of multiple malignant cancers. However, the functions of circRNAs in ovarian cancer need to be further explored. The aim of our study is to explore the role of circRNA-UBAP2 in ovarian cancer and its mechanism. Results: circRNA-UBAP2 was upregulated in ovarian cancer tissues and cell lines. Knockdown of circRNA-UBAP2 inhibited cell proliferation and promoted cell apoptosis, but circRNA-UBAP2 overexpressed got opposite results. In addition, circRNA-UBAP2 targeted miR-382-5p and downregulated its expression, PRPF8 was a target gene of miR-382-5p. Furthemore, circRNA-UBAP2/miR-382-5p/PRPF8 axis affected the proliferation, apoptosis and cell cycle of ovarian cancer through the mechanism of competing endogenous RNAs (ceRNA). Conclusion: circRNA-UBAP2 acted as a ceRNA to sponged miR-382-5p, increased the expression level of PRPF8, and prompted proliferation and inhibited apoptosis in ovarian cancer cells.


2022 ◽  
Vol 20 (2) ◽  
pp. 281-286
Author(s):  
Hongmei Wang ◽  
Yina Wang

Purpose: To investigate the anticancer effects of 7-hydroxycoumarin against cisplatin-resistant ovarian cancer cell line, and the underlying mechanism(s). Methods: Cell proliferation was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The 4’,6-diamidino-2-phenylindole (DAPI) and acridine orange/ethidium bromide (AO/EB) dual staining methods were used for measuring cell apoptosis in terms of DNA damage. Flow cytometry was used for analysis of mitosis of cancer cells, while protein expression levels were assayed with western blotting. Results: The 7-hydroxycoumarin preferentially inhibited the proliferation of the ovarian cancer cells, but had significantly less prominent effects on normal cells (p < 0.05). The decrease in cell proliferation was due to induction of cell apoptosis via caspase-linked apoptotic pathway. Treatment with 7- hdoxycoumarin further led to the arrest of cancer cell cycle at G2/M stage (p < 0.05) via down-regulation of the expressions of regulatory proteins that promote mitotic entry. Conclusion: 7-Hydroxycoumarin exerts significant anticancer effect against cisplatin-resistant ovarian cancer cells via decrease in cell proliferation, induction of apoptosis and mitotic cell cycle arrest. Thus, the compound could emerge as a vital lead molecule in the treatment of cisplatin-resistant type of human ovarian cancer.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A1023-A1024
Author(s):  
Ilangovan Ramachandran ◽  
Sivakumar Ramadoss ◽  
Suvajit Sen ◽  
Selvendiran Karuppaiyah ◽  
R Ileng Kumaran ◽  
...  

Abstract Introduction: Ovarian cancer is one of the leading cause of morbidity and death among women, with a five-year relative survival rate of only 30% in patients diagnosed with distant metastasis. The ovarian cancer cells initially respond to first-line platinum drug cisplatin [cis-diamminedichloroplatinum(II) (CDDP)] treatment. But, they subsequently develop resistance to CDDP and eventually exhibit chemoresistance. Aldehyde dehydrogenase 1 family member A1 (ALDH1A1) is one of the key functional markers of ovarian cancer stem cells (CSCs) that confers cancer stemness and therapeutic resistance, and is associated with poor prognosis and patient survival. In this study, we have assessed the anticancer effects of the ALDH1A1 inhibitor, A37, in CDDP-resistant ovarian cancer cells in vitro. Experimental Methods: SK-OV-3-CDDP, cisplatin-resistant ovarian cancer cells were treated with different concentrations of the small molecule inhibitor of ALDH1A1, A37. We determined the cell proliferation using water-soluble tetrazolium salt (WST-1) assay at 24 and 48 h. The distribution of cell division phases by cell cycle analysis and oxygen consumption rate (OCR) via seahorse extracellular flux analysis were assessed by flow cytometry and seahorse XFe24 analyzer, respectively. Furthermore, we examined the protein expression of key signaling molecules by western blot analysis and cancer stemness by tumorsphere formation assay. Results: Treatment of SK-OV-3-CDDP cells with A37 significantly reduced the ovarian cancer cell proliferation. Interestingly, A37 induced cell cycle arrest as observed by an increase in G1 phase of the cell cycle. Additionally, A37 reduced the mitochondrial respiration of ovarian cancer cells as observed by the decrease in basal OCR. Moreover, A37 treatment markedly decreased the expression of WW domain containing transcription regulator 1 (WWTR1) protein [also called as transcriptional co-activator with PDZ-binding motif (TAZ)], which is a key downstream effector of mammalian Hippo signaling pathway that promotes cancer stemness, metastasis and chemoresistance. Importantly, A37 reduced the number and size of the tumorspheres. Conclusions: Our study suggests that inhibiting the ALDH1A1 activity using A37 reduced the cell proliferation and induced cell cycle arrest in CDPP-resistant ovarian cancer cells. The mechanism by which A37 elicits its anticancer effects on ovarian cancer cells include impairment in mitochondrial respiration that could alter cancer cell metabolism, and a decrease in WWTR1/TAZ expression and tumorsphere formation that could suppress cancer stemness. Our findings demonstrate that inhibition of ALDH1A1 could effectively eliminate the chemoresistant ovarian cancer cells, and therefore, new strategies targeting ALDH1A1 could lead to the development of novel therapeutics for aggressive chemoresistant ovarian cancer.


2020 ◽  
Author(s):  
hanwei cui ◽  
Qian Yi ◽  
Min Tian ◽  
Yuteng Liang ◽  
Jie Huang ◽  
...  

Abstract BackgroundAdenosine (A)-to-inosine (I) RNA editing is the most prevalent RNA editing mechanism, in which adenosine deaminases acting on RNA 1 (ADAR1) is a major adenosine deaminase. Increasing evidence suggests that editing dysregulation of ADAR1 plays an important role in human tumorigenesis, while the underlying mechanism remains elusive. MethodsThe clinical relevance of ADAR1 was analyzed by real-time PCR, western blotting and immunohistochemistry of ovarian cancer tissues. ADAR1 function on ovarian cancer cells in vitro were explored by colony formation assay, transwell assay and Brdu-based cell cycle assay in vitro and xenograft models in vivo. Western blotting, immunostaining and DNA/RNA immunoprecipitation-qPCR were conducted to confirm DNA damage and R-loop accumulation in ovarian cancer cells. Co-immunoprecipitation and DNA/RNA immunoprecipitation were performed to detect interaction of DHX9, ADAR1 and R-loop complex in ovarian cancer cells.ResultsWe demonstrated that ADAR1 was highly expressed in ovarian cancer tissues and negatively correlated with progression free survival of ovarian cancer patients. Importantly, silence of ADAR1 repressed ovarian cancer cell growth and colony formation in vitro and inhibited ovarian cancer cell tumorigenesis in vivo. Further cell cycle and transcriptome profile analysis revealed that silence of ADAR1 in ovarian cancer cells induced cell cycle arrest at G1/G0 stage. Mechanically, loss of ADAR1 caused R-loop abnormal accumulation, thereby contributing to single stand DNA break and ATR pathway activation. Additionally, ADAR1 interacted with DHX9 to regulate R-loop complex formation, and A-to-I editing of nascent RNA repressed R-loop formation during co-transcriptional process. ConclusionsOur results identify a novel ADAR1/R-loop/ATR axis critical for ovarian cancer progression and a potential target for ovarian cancer therapy.


2020 ◽  
Author(s):  
Zi-Qing Shi ◽  
Zi-Yan Chen ◽  
Yao Han ◽  
Heng-Yan Zhu ◽  
Meng-Dan Lyu ◽  
...  

Abstract Background: Wnt-inducible signaling pathway protein 2 (WISP2) is a wnt1-induced signaling pathway protein 2. Although studies indicate that WISP2 may promote the development of various tumors, its role in ovarian cancer remains unclear. The objective of the current study was to analyze the effects of WISP2 on the proliferation and migration of ovarian cancer cells in vitro and in vivo.Results: Immunohistochemistry and western blotting indicated that WISP2 was highly expressed in various ovarian cancer tissues and cell lines,but weakly expressed in normal ovary tissue. WISP2 deletion inhibited cell growth, clone formation, and migration of ovarian cancer cells while promoting cell apoptosis and affecting the cell cycle. This growth inhibitory effect caused by WISP2 loss is due to the inhibition of phosphorylated extracellular signal-related kinase (p-ERK)1/2, as well as CCAAT/enhancer-binding protein α (CEBPα) and CEPBβ. In addition, WISP2 deletion also activated the Yes-associated protein (YAP).Conclusion: WISP2 deletion inhibits ovarian cancer cell proliferation by affecting ERK signaling pathways.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2337
Author(s):  
Eileen Deuster ◽  
Ivi Hysenaj ◽  
Maja Kahaly ◽  
Elisa Schmoeckel ◽  
Doris Mayr ◽  
...  

The platelet-activating factor receptor (PAFR) and its ligand (PAF) are important inflammatory mediators that are overexpressed in ovarian cancer. The receptor is an important player in ovarian cancer development. In this study, we aimed to evaluate the prognostic value of PAFR in epithelial ovarian cancer (EOC) and the potential use of its antagonist, rupatadine, as an experimental treatment. Tissue microarrays of ovarian cancer patients, most markedly those with a non-mucinous subtype, immunohistochemically overexpressed PAFR. Elevated cytoplasmic PAFR expression was found to significantly and independently impair patients’ overall and recurrence-free survival (OS: median 83.48 vs. 155.03 months; p = 0.022; RFS: median 164.46 vs. 78.03 months; p = 0.015). In vitro, the serous ovarian cancer subtypes especially displayed an elevated PAFR gene and protein expression. siRNA knockdown of PAFR decreased cell proliferation significantly, thus confirming the receptor’s protumorigenic effect on ovarian cancer cells. The clinically approved PAFR antagonist rupatadine effectively inhibited in vitro cell proliferation and migration of ovarian cancer cells. PAFR is a prognostic marker in ovarian cancer patients and its inhibition through rupatadine may have important therapeutic implications in the therapy of ovarian cancer patients.


2020 ◽  
Author(s):  
Zi-Qing Shi ◽  
Zi-Yan Chen ◽  
Yao Han ◽  
Heng-Yan Zhu ◽  
Meng-Dan Lyu ◽  
...  

Abstract Background Wnt inducible signaling protein 2 (WISP2) is a wnt1-induced signaling pathway protein 2. Although studies indicate that WISP2 may promote the development of various tumors, its role in ovarian cancer remains unclear. The objective of the current study was to analyze the effects of WISP2 on proliferation and migration of ovarian cancer cells in vitro and in vivo . Results Immunohistochemistry and western blot results indicated that WISP2 was highly expressed in various ovarian tissues and cell lines. WISP2 deletion inhibited cell growth, clone formation, and migration of ovarian cancer cells. WISP2 deletion promoted cell apoptosis and affected the cell cycle. This growth inhibitory effect caused by WISP2 loss is due to the inhibition of extracellular signal-related kinase (p-ERK)1/2, as well as CEBPα and CEBPβ. In addition, WISP2 deletion also activated the Yes-associated protein (YAP). Conclusion WISP2 deletion inhibits ovarian cancer cell proliferation by affecting ERK signaling pathways.


Author(s):  
Liguang Zhou ◽  
Jing Liu ◽  
Wen Meng ◽  
Huawei Zhang ◽  
Bo Chen

Background: The anticancer activity of silibinin (SB) has been demonstrated in various cancer cell types. However, its low solubility and poor bioavailability limit its clinical potential in biomedical applications. Microbubbles in combination with ultrasound are promising vehicles for local drug delivery. Objective: The present study determined the antitumour effects and molecular mechanism of silibinin-loaded microbubbles (SBMBs) in combination with ultrasound on ovarian cancer in vitro. Methods: SBMBs were prepared using mechanical vibration. The viability of A2780 cells was determined using the MTT assay. Flow cytometry was performed to detect cell apoptosis and the cell cycle. The expression of receptor tyrosine kinase (RTK)-associated downstream proteins was detected using multiplex assays and Western blots. Results: The present study designed and synthesized SBMBs. SBMBs in combination with ultrasound decreased A2780 cell viability in a dose- and time-dependent manner. The half maximal inhibitory concentration (IC50) showed that the cytotoxicity of the SBMBs was approximately 1.5 times greater than that of the SB in A2780 cells. SBMBs in combination with ultrasound resulted in significantly higher apoptosis efficiency compared to the SB group, and the SBMB population of cells was arrested in the G1/G0 phase. Further experiments demonstrated that SBMBs decreased the expression of signal transducer and activator of transcription 3 (STAT3), Ak strain transforming (AKT), and extracellular signal-regulated kinase (Erk) and had a greater effect than SB in A2780 cells. Inhibitors of AKT, Erk and STAT3 promoted the cytotoxicity of SBMBs. Conclusion: SBMBs in combination with ultrasound may enhance the cytotoxicity efficiency of SB via the promotion of apoptosis and cell cycle arrest in ovarian cancer cells and the inactivation of the STAT3, AKT and Erk signalling pathways.


Sign in / Sign up

Export Citation Format

Share Document