155 EFFECT OF CO-CULTURE WITH CUMULUS-DERIVED SOMATIC CELLS DURING IN VITRO MATURATION ON PORCINE CUMULUS–OOCYTE COMPLEXES AND SUBSEQUENT EMBRYONIC DEVELOPMENT AFTER IN VITRO FERTILIZATION

2014 ◽  
Vol 26 (1) ◽  
pp. 191 ◽  
Author(s):  
J. D. Yoon ◽  
L. Cai ◽  
S. U. Hwang ◽  
Y. Jeon ◽  
E. Kim ◽  
...  

The purpose of this study was to investigate the effects of co-culture with cumulus-derived somatic cells (CSC) during porcine in vitro maturation (IVM) and subsequent embryonic development after IVF. The CSC were cultured in Dulbecco's modified Eagle medium for 48 h with various numbers of cumulus-derived somatic cells (0.0, 2.5, 5.0, and 10.0 × 104), and then cultured in TCM-199 for 4 h before the oocytes were added. Cumulus-oocytes complexes from 3- to 6-mm follicles were matured in 500 μL of TCM-199, with eCG and hCG, for 22 h, and then cultured in M199 without hormones for 22 h. Each experiment consisted of at least 4 replicates. Statistical analyses were carried out using SPSS 17.0 software (SPSS Inc., Chicago, IL). Percentage data were compared by one-way ANOVA, followed by Duncan's multiple range test. Data were presented as means ± s.e.m. Differences were considered to be significant if the P-value was 0.05. After IVM, no significant difference (P < 0.05) was observed in nuclear maturation rate among the 0.0, 2.5, 5.0, and 10.0 × 104 groups (88.0 ± 2.37, 81.5 ± 2.17, 87.0 ± 1.98 and 86.0 ± 1.93%, respectively). The 2.5 × 104 group showed a significant (P < 0.05) increase in intracellular glutathione (GSH) levels compared with that of the other groups. Intracellular reactive oxygen species (ROS) levels of mature oocyte in all groups showed no significant differences. The developmental competence of matured oocytes in all groups was evaluated after IVF. The 2.5 and 5.0 × 104 groups showed significantly (P < 0.05) high cleavage rates (60.0 ± 4.7 and 64.52 ± 5.9%, respectively) compared with the 0 and 10.0 × 104 groups (43.15 ± 5.0 and 53.8 ± 5.0%, respectively). The 2.5 × 104 group showed a significantly (P < 0.05) higher BL formation rate (35.7 ± 2.9) than control group (21.0 ± 3.8%, respectively), and higher total cell number (127.25 ± 7.7) compared with the 0 and 10 × 104 groups (89.3 ± 4.0 and 92.6 ± 3.7, respectively). In the analysis of gene expression, IVF-BL derived from the 2.5 and 5.0 × 104 groups showed higher (P < 0.05) mRNA expression of PCNA, which is an essential component of the DNA replication and repair machinery and POU5F1 has been used to evaluate developmental potential in embryos. The 10.0 × 104 group showed higher (P < 0.05) mRNA expression of caspase-3 and Bak as known pro-apoptotic factors, compared with the control group IVF-BL. The results of cortical granules distribution which leads digesting sperm receptor proteins ZP2 and ZP3 to block polyspermy, showed that the 2.5 × 104 group was increased significantly (P < 0.05) compared with the other co-culture groups (13.7 ± 6.1, 29.2 ± 9.5, 18.3 ± 0.8 and 19.52 ± 5.3, respectively). In conclusion, co-culture with 2.5 × 104 cumulus-derived somatic cells during IVM improved the developmental potential of porcine IVF embryos by increasing the intracellular GSH level and distribution of cortical granules during oocyte maturation. This work was supported, in part, by a grant from the Next-Generation BioGreen 21 Program (No. PJ00956901), Rural Development Administration, and the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2012R1A1A4A01004885, NRF-2013R1A2A2A04008751), Republic of Korea.

2012 ◽  
Vol 24 (1) ◽  
pp. 207 ◽  
Author(s):  
S. S. Kwak ◽  
S. A. Jeong ◽  
Y. B. Jeon ◽  
S. H. Hyun

The present study investigated the effects of resveratrol (a phytoalexin with various pharmacological activities) during in vitro maturation (IVM) of porcine oocytes on nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, gene expression in matured oocytes and subsequent embryonic development after parthenogenetic activation (PA) and IVF. Data were analyzed with SPSS 17.0 using Duncan's multiple range test. In experiment 1, a total of 1146 cumulus–oocyte complexes (COC) were divided into 5 groups (0, 0.1, 0.5, 2.0 and 10.0 μM resveratrol). In the nuclear maturation after 44-h IVM, the groups of 0.1, 0.5 and 2.0 μM (83.0, 84.1 and 88.3%, respectively) had no significant difference compared to the control group (84.1%). The group of 10.0 μM decreased the nuclear maturation (75.0%) significantly (P < 0.05). In experiment 2, a total of 300 matured oocytes were examined for the effects of different resveratrol concentrations (0, 0.5, 2.0 and 10.0 μM) on porcine oocyte intracellular GSH and ROS levels. The groups of 0.5 and 2.0 μM showed a significant (P < 0.05) increase in intracellular GSH levels (1.3 and 1.3, respectively) compared with the control and 10.0 μM groups (1.0 and 1.0, respectively). The intracellular ROS level of oocytes matured with 2.0 μM resveratrol (0.4) was significantly (P < 0.05) decreased compared to other groups (control: 1.0; 0.5 μM: 0.6; and 10.0 μM: 0.7). In experiment 3, lower expression of apoptosis-related genes (Bax, Caspase-3 and Bak) was observed in matured oocytes treated with 2.0 μM resveratrol when compared with that of the control (P < 0.05). In experiment 4, a total of 728 oocytes were divided into 4 groups (control, 0.5, 2.0 and 10.0 μM) and examined subsequent to embryonic development after PA. Oocytes treated with 2.0 μM resveratrol during IVM had a significantly higher cleavage (CL) rate, blastocyst (BL) formation rate and total cell numbers (TCN) after PA compared with those of the control (2.0 μM: 96.6%, 62.1% and 49.1 vs control: 88.3%, 48.8% and 41.4, respectively) and the 10.0 μM groups (87.3%, 41.4% and 40.9, respectively). Oocytes treated with 0.5 μM resveratrol (87.2%, 50.5% and 48.6, respectively) during IVM had significantly higher TCN, but there were no differences in CL and BL formation rates. In experiment 5, a total of 935 oocytes in 3 groups (control, 2.0 and 10.0 μM resveratrol) were conducted in IVF. The BL formation rate and TCN were significantly higher in the group of 2.0 μM resveratrol (20.5% and 54.0, respectively) than the control (11.0% and 43.4, respectively) and 10.0 μM group (11.7% and 45.0, respectively), but there was no significant difference in CL rate. In conclusion, 2.0 μM resveratrol supplementation during IVM improved the developmental potential of PA and IVF in porcine embryos by increasing the intracellular GSH concentration, decreasing the ROS level and decreasing apoptosis-related gene expression during oocyte maturation. This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ008121), Rural Development Administration, Republic of Korea.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 741
Author(s):  
Dongjin Oh ◽  
Joohyeong Lee ◽  
Eunhye Kim ◽  
Seon-Ung Hwang ◽  
Junchul-David Yoon ◽  
...  

Interleukin-7 (IL-7) is a cytokine essential for cell development, proliferation and survival. However, its role in oocyte maturation is largely unknown. To investigate the effects of IL-7 on the in vitro maturation (IVM) of porcine oocytes, we analyzed nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, and subsequent embryonic developmental competence after parthenogenetic activation (PA) under several concentrations of IL-7. After IVM, IL-7 treated groups showed significantly higher nuclear maturation and significantly decreased intracellular ROS levels compared with the control group. All IL-7 treatment groups exhibited significantly increased intracellular GSH levels compared with the control group. All oocytes matured with IL-7 treatment during IVM exhibited significantly higher cleavage and blastocyst formation rates after PA than the non-treatment group. Furthermore, significantly higher mRNA expression levels of developmental-related genes (PCNA, Filia, and NPM2) and antioxidant-related genes (GSR and PRDX1) were observed in the IL-7-supplemented oocytes than in the control group. IL-7-supplemented cumulus cells showed significantly higher mRNA expression of the anti-apoptotic gene BCL2L1 and mitochondria-related genes (TFAM and NOX4), and lower transcript levels of the apoptosis related-gene, Caspase3, than the control group. Collectively, the present study suggests that IL-7 supplementation during porcine IVM improves oocyte maturation and the developmental potential of porcine embryos after PA.


2014 ◽  
Vol 26 (1) ◽  
pp. 191
Author(s):  
Y. Jeon ◽  
J. D. Yoon ◽  
L. Cai ◽  
S. U. Hwang ◽  
E. Kim ◽  
...  

Zinc (Zn) is one of the abundant transition metals in biology and is an essential component of most cells. However, there are few reports about the effect of Zn in porcine oocytes. The objective was to investigate the effects of supplementary Zn during in vitro maturation (IVM) of porcine oocytes. We investigated nuclear maturation, intracellular glutathione (GSH) levels, reactive oxygen species (ROS) levels, and subsequent embryonic development after IVF. Before the experiment, Zn concentrations in IVM medium and body fluids were measured using inductively coupled plasma spectrophotometer (sensitivity: 1 μM) and treatment concentrations were determined. Zinc concentration was 12.6 μM in porcine plasma and 12.9 μM in porcine follicular fluid. We confirmed that Zn was not detected in IVM medium. A total of 541 cumulus–oocyte complexes (COC) were used for the evaluation of nuclear maturation. The COC were matured in TCM-199 medium supplemented with various concentrations of Zn (0, 6, 12, 18, and 24 μM). After 44 h of IVM, no significant difference was observed in all groups (metaphase II rate: 85.7, 88.7, 90.4, 90.3, and 87.2%, respectively). A total of 100 matured oocytes were examined for the effects of different Zn concentrations (0, 6, 12, 18, and 24 μM) on porcine oocyte intracellular GSH and ROS levels, which were measured through fluorescent staining and image analysis program. The groups of 12, 18, and 24 μM showed a significant (P < 0.05) increase in intracellular GSH levels (1.45, 1.67, and 1.78, respectively) compared with the control and 6 μM group (1.00 and 1.08, respectively). The intracellular ROS level of oocytes matured with 12, 18, and 24 μM (0.82, 0.68, and 0.55) were significantly (P < 0.05) decreased compared with the control and 6 μM groups (1.00 and 1.03, respectively). Finally, the developmental competence of oocytes matured with different concentrations of Zn (0, 6, 12, 18, and 24 μM) was evaluated after IVF. There were no significantly different in cleavage rates. However, cleavage patterns and blastocyst (BL) formation were different. Fragmented embryo ratio of the 12 μM group (14.9%) was significantly lower than that of the other groups (control, 6, 18, and 24 μM: 26.4, 17.8, 18.4, and 18.0%, respectively). Oocytes treated with 12 μM Zn during IVM had a significantly higher BL formation rate (28.2%) after IVF compared with the control (19.8%). In conclusion, these results indicate that Zn treatment as body fluid concentration during IVM improved the developmental potential of IVF in porcine embryos by increasing the intracellular GSH concentration and decreasing the ROS level. This work was supported, in part, by a grant from the Next-Generation Bio Green 21 Program (No. PJ00956901), Rural Development Administration, and the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2012R1A1A4A01004885, NRF-2013R1A2A2A04008751), Republic of Korea.


2015 ◽  
Vol 27 (1) ◽  
pp. 236
Author(s):  
Y. Jeon ◽  
B. Baasanjav ◽  
Y. I. Jeong ◽  
Y. W. Jeong ◽  
Y. W. Kim ◽  
...  

Autophagy is a critical process for the maintenance of cellular homeostasis and mammalian early embryogenesis. Autophagy can be regulated by various chemical inducers. However, there are few reports about effect of autophagy inducer in vitro maturation (IVM) of porcine oocyte. The present study investigated the effects of supplementary trehalose, a novel mTOR-independent autophagy enhancer, on oocyte maturation and embryonic development after parthenogenetic activation (PA). Immature oocytes were treated with various concentrations (0, 25, 50, and 100 mM) of trehalose in M-199 (Invitrogen, Carlsbad, CA) supplemented with 10 ng mL–1 of epidermal growth factor (EGF; Sigma-Aldrich Corp.), 1 ug mL–1 of insulin (Sigma-Aldrich Corp.), 4 IU mL–1 of pregnant mare serum gonadotropin (PMSG; Intervet, Boxmeer, Holland), 4 IU mL–1 of human chorionic gonadotropin (hCG; Intervet), and 10% (vol/vol) porcine follicular fluid (pFF) for 10 h, and transferred to another IVM medium without trehalose. Osmolality of each groups (0, 25, 50, and 100 mM trehalose) was in the 290 to 295, 310 to 315, 330 to 335, and 375 to 380 osmol range, respectively. After 44 h of IVM, trehalose treatment during IVM did not improve nuclear maturation rates of oocytes in any group (90.7, 92.1, 92.7, and 90.1%, respectively). The developmental competence of oocytes matured with different trehalose concentrations was evaluated after PA. There were no significant differences in cleavage rates. However, blastocyst (BL) formation was different. Oocytes treated with 25 mM of trehalose during IVM had a significantly higher (P < 0.05) BL formation rate (64.2%) after PA compared with the control (52.0%). The BL quality was also improved in the 25 mM trehalose-treated group. Early BL rate significantly reduced in the 25 mM trehalose-treated group as compared to control (19.6 v. 29.9%, P < 0.05). By contrast, expanded BL rate significantly increased in the 25 mM trehalose-treated group than of control (27.7 v. 11.0%, P < 0.05). Total cell numbers of BL were significantly higher (P < 0.05) in the 25 mM trehalose-treated group compared to those in the control group (52.2 v. 36.8). However, BL rate and quality of oocytes treated with 50 and 100 mM trehalose were similar with control group. In conclusion, these results indicate that 25 mM trehalose during IVM improved the developmental potential of porcine embryos. Trehalose will be useful for large-scale production of BL with good quality in porcine in vitro production.This work was supported by a grant from the Next-Generation Bio Green 21 Program (No. PJ009563032014), Rural Development Administration, Republic of Korea.


Zygote ◽  
2009 ◽  
Vol 17 (1) ◽  
pp. 57-61 ◽  
Author(s):  
M. Popelková ◽  
Z. Turanová ◽  
L. Koprdová ◽  
A. Ostró ◽  
S. Toporcerová ◽  
...  

SummaryThe aim of the study was to determine the efficiency of two vitrification techniques followed by two assisted hatching (AH) techniques based on post-thaw developmental capacity of precompacted rabbit embryos and their ability to leave the zona pellucida (hatching) during in vitro culture. The total cell number and embryo diameter as additional markers of embryo quality after warming were evaluated. In vivo fertilized, in vitro cultured 8–12-cell rabbit embryos obtained from superovulated rabbit does were cryopreserved by two-step vitrification method using ethylene glycol (EG) as cryoprotectant or by one-step vitrification method with EG and Ficoll (EG+Ficoll). Thawed embryos were subjected to enzymatic or mechanical AH. Vitrified EG group showed significantly lower (P < 0.05) blastocyst rate (22.5%) and hatching rate (15%) than those vitrified with EG + Ficoll (63 and 63% resp.) and that of control (97 and 97% respectively). Significantly lower values of total cell number (P < 0.05) as well as embryo diameter (P < 0.01) in EG group compared with EG + Ficoll and control group were recorded. No significant difference was found in developmental potential of warmed embryos treated by either mechanical or enzymatic AH. The present study demonstrates that the EG + Ficoll vitrification protocol provides superior embryo survival rates over the EG vitrification protocol for 8–12-cell stage precompacted rabbit embryos. No positive effect of either mechanical or enzymatic AH on the post-thaw viability and quality of rabbit embryos in vitro was observed.


2016 ◽  
Vol 28 (2) ◽  
pp. 214
Author(s):  
G. R. Leal ◽  
C. A. S. Monteiro ◽  
H. F. R. A. Saraiva ◽  
A. J. R. Camargo ◽  
P. M. S. Rosa ◽  
...  

In vitro embryo production (IVP) is an important tool for cattle breeding. Brazilian dairy systems are based on Gyr × Holstein crossbreds, which integrates adaptability to tropical conditions and milk production. Quality determines the oocyte proportion that will develop to blastocyst stage, and although the lipid content is important in oocyte development, a high concentration in embryos is associated with cryotolerance reduction, making this a relevant issue for IVP systems. The in vitro maturation system (IVM) simulated physiological oocyte maturation (SPOM) mimics the physiological maturation events by using cyclic adenosine monophosphate (cAMP) modulators, which promote the increase of oocyte competence. Among the modulators, Forskolin has lipolytic properties. The aim of this study was to evaluate the effect of the SPOM system (Albuz 2010 Hum. Reprod. 25, 12) on bovine embryos (Gyr × Holstein) regarding their total number of cells (TNC) and lipid content. Oocytes were obtained by ovum pick-up from Gyr cows in 5 replications. After selection, they were randomly divided into 2 groups: SPOM (S) and control (C). The IVM lasted 24 h for group C (TCM 199 medium without FBS) in culture oven at 38.5°C, 5% CO2 in atmospheric air and high humidity. In the SPOM system, oocytes were in pre-IVM [TCM 199 medium + 100 µM Forskolin + 500 µM 3-isobutyl-1-methylxanthine (IBMX)] for 2 h and followed for extended IVM (TCM 199 medium + 20 µM cilostamide) for 28 h under the same conditions as control group. After IVM, oocytes were fertilised with semen from a single Holstein bull that was prepared by Percoll gradient method in Fert-TALP medium (Bioklone® Animal Reproduction, São Paulo, Brazil) for 22 h and transfered to culture droplets, where they remained for 7 days (n = 10–13 per group). The lipid content analysis was performed by staining with Oil red and the stained area fraction of each embryo was measured using software ImageJ (NIH, Bethesda, MD, USA). The TNC was measured after being stained with Hoechst 33342 and results were analysed by Student's t-test in Instat GraphPad program, with a 5% significance level. There was no significant difference (P > 0.05) between embryos from both groups on TNC (group S: 88.9 ± 28.0A; group C: 101.6 ± 29.1a) and lipid content (group S: 0.93 ± 12:18A; group C: ±0.15 to 0.96) analysis. Some studies have shown there is a beneficial effect on embryo quality when using this system; however, our results demonstrated that there was no effect on total number of cells using our conditions. Some authors have also demonstrated a reduction in embryo lipid content using Forskolin during in vitro culture. Our results suggest that the time of Forskolin exposure was not enough to ensure lipolytic action on the structures produced from oocytes (Gyr) treated in pre-IVM. It was concluded that the SPOM system had no effect on TNC and lipid content of Gyr/Holstein embryos. Financial support from FAPERJ and CAPES is acknowledged.


Zygote ◽  
2020 ◽  
pp. 1-6
Author(s):  
Ji-Eun Park ◽  
Sang-Hee Lee ◽  
Yong Hwangbo ◽  
Choon-Keun Park

Summary The aim of the present study was to investigate the effects of porcine follicular fluid (pFF) from large-sized (LFF; >8 mm in diameter) and medium-sized (MFF; 3–6 mm in diameter) follicles on the maturation and developmental competence of porcine oocytes. Cumulus–oocyte complexes (COCs) were collected from follicles 3–6 mm in diameter. The collected COCs were incubated for 22 h with LFF or MFF (in vitro maturation (IVM)-I stage) and were incubated subsequently for 22 h with LFF or MFF (IVM-II stage). Cumulus expansion was confirmed after the IVM-I stage and nuclear maturation was evaluated after the IVM-II stage. Intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured and embryonic development was evaluated. Relative cumulus expansion and GSH levels were higher in the LFF group compared with in the MFF group after the IVM-I stage (P < 0.05). After the IVM-II stage, the numbers of oocytes in metaphase-II were increased in the LFF group and GSH content was higher in all of the LFF treatment groups compared with in the MFF treatment groups during both IVM stages (P < 0.05). ROS levels were reduced by LFF treatment regardless of IVM stage (P < 0.05). Blastocyst formation and the total numbers of cells in blastocysts were increased in all LFF treatment groups compared with the control group (P < 0.05). These results suggested that pFF from large follicles at the IVM stage could improve nucleic and cytoplasmic maturation status and further embryonic development through reducing ROS levels and enhancing responsiveness to gonadotropins.


Author(s):  
Alan da Silva LIRA ◽  
Ricardo de Macedo CHAVES ◽  
Felipe de Jesus MORAES JUNIOR ◽  
Sergio Henrique COSTA JUNIOR ◽  
Brenda Karine Lima do AMARAL ◽  
...  

ABSTRACT We aimed to assess the effects of melatonin in the in vitro production of bovine embryos. Our experiment was conducted at the Laboratório de Reprodução Animal of the Universidade Estadual do Maranhão. The cumulus-oocyte complexes (COCs) were distributed among treatments at concentrations of 0, 10-1, 10-3 and 10-5 µMol/L melatonin. Our experiment was further divided into two: the first was to assess the effect of different concentrations of melatonin (treatments) on the maturation rate of COCs, and the second was to assess the effects of melatonin treatments on the in vitro production of bovine embryos. The results from the first experiment demonstrated no significant difference between the in vitro maturation rate of the cultivated COCs in treatments with melatonin. In the second experiment, however, melatonin treatments yielded statistically higher cleavage, morula and blastocyst rates in the 10-5 µM group (52.9%, 52.9%, and 35.3%, respectively), and lower rates in the 10-1 µM group (19.5%, 19.5% and 7.8%, respectively), compared to the others. The control group (no melatonin) and the 10-3 µM group showed similar results. We concluded that supplementation of melatonin in the in vitro maturation medium resulted in no improvement in the oocyte maturation rate, but in the in vitro production of embryos at different concentrations, the 10-5 µM group displayed better results, but with no improvement in the variables (P < 0.05).


2006 ◽  
Vol 18 (2) ◽  
pp. 224
Author(s):  
G. Cancino-Arroyo ◽  
R. Ake-López ◽  
J. Herrera ◽  
F. Centurion ◽  
A. Ordoñez-León

The objective was to evaluate the effect of fat supplementation on oocyte quality and in vitro embryonic development (48 h). A total of 18 ewes, with a body condition score of 2.5 to 3 points out of 5, having had three to four lamb births, and at three to four months post-lamb birth, were distributed between an experimental oil group (OG; n = 9) that received corn oil (4% of the MS/diet) and a control group (CG; n = 9) that didn't receive oil. The two groups were maintained in confinement for 21 days (the duration of the experiment) and fed first with a concentrate diet followed by forage. The animals had access to minerals and water ad libitum. The diets were similar in energy (10.3 ± 0.05 MJ/s/d) and protein (141.75 ± 5.7 gPC/s/d) for both groups. The estrous cycle was synchronized (14 days) with intravaginal sponges (40 mg of fluorogestone acetate), inserted 7 days after the beginning of the diets. The end of the diet coincided with the retirement of the sponges. One day before sponge retirement, 75 mg prostaglandin F2α per sheep was administered, followed by ovarian stimulation with 1000 IU of pregnant mare serum gonadotropin (PMSG). Follicular diameter was determined by ventral laparotomy with the aid of a micrometer. Follicles were classified as small (2 to 2.9 mm), medium (3 to 4.9 mm), and large (>5 mm); oocytes were collected in TCM-199 medium. Oocytes were classified as excellent, good, fair, or low quality and transferred to Petri dishes in drops (50 mL) of TCM-199. Oocytes were matured and fertilized in vitro and cultured for 48 h. Oocyte quality as well as maturation, fertilization, and cleavage rates were compared by ANOVA. Ewes from the OG group presented a statistically higher proportion of oocytes with excellent quality (42%; P < 0.05) than GT ewes (26%). The proportion of good quality and fair quality oocytes was similar among groups (P > 0.05). A higher proportion of oocytes of low quality was found in the control group than in the OG group (40% vs. 18%); however, there was no significant difference (P > 0.05). Higher rates of maturation, fertilization, and early development were found in the OG compared with the CG (81.8, 60.6, and 36.4 vs. 68.6, 42.9, and 17.1, respectively); however, the differences were not significant (P > 0.05). In conclusion, the addition of 4% corn oil in the diet improved the quality of the oocytes; however, it had no significant effect on early embryonic development.


2007 ◽  
Vol 19 (1) ◽  
pp. 258
Author(s):  
B. Agung ◽  
T. Otoi ◽  
D. Fuchimoto ◽  
S. Senbon ◽  
A. Onishi ◽  
...  

When used as a solo maturation medium for oocytes, porcine follicular fluid (pFF) promoted male pronucleus formation (MPF) of oocytes after in vitro maturation (IVM), using a static system, and in vitro fertilization (IVF) in pigs (Naito et al. 1988 Gamete Res. 21, 289–295). However, the developmental competence of oocytes matured in pFF after IVM/IVF has not been reported. This study was conducted to assess the ability of pFF as a maturation medium to support IVM/IVF of porcine oocytes and their subsequent in vitro development. pFF, including cumulus–oocyte complexes (COCs), was aspirated from follicles (2–5 mm in diameter) of prepubertal crossbred gilt ovaries, and large clusters of follicular cells (FC) were removed from pFF by filtration through 212 �m of mesh. All of the COCs in filtered pFF were collected, and COCs with compact cumulus cells were selected for IVM. Also, small clusters of FC were collected by centrifugation of the filtered pFF, and pFF without any cells was prepared by centrifugation and used as a maturation medium (MpFF) after supplementation with FSH and antibiotics. COCs were transferred to 3.5 mL (in a 15-mL test tube) of MpFF with FC (5.2 � 106 cells mL-1) and cultured for 44–48 h at 38.5�C in 5% O2 and 5% CO2 using the rotating culture system. As a control group, COCs were cultured in 2 mL of MpFF without FC in a 35-mm Petri dish by the standard static culture system. After maturation, culture oocytes were co-incubated (IVF) for 5 h with frozen–thawed sperm in vitro, as reported previously (Kikuchi et al. 2002 Biol. Reprod. 66, 1033–1041), and then some of them were fixed 10 h after IVF to assess the fertilization status; the rest of them were cultured in PZM (Yoshioka et al. 2002 Biol. Reprod. 60, 112–119) for 7 days to assess their early embryonic development. All of the data were analyzed by ANOVA. Oocytes cultured with FC in the rotating system (R group) showed significantly higher sperm penetration (71.0%), MPF formation (70.5%), and normal fertilization (monospermic fertilization with female and male pronuclei; 31.5%) rates than those in the control group (56.0%, 56.9%, and 17.6%, respectively; P &lt; 0.05). Also, the R group showed significantly higher rates of 8-cell embryos at 2 days after IVF and blastocyst formation at 7 days after IVF than those of the control group (17.2% vs. 8.3% and 10.9% vs. 4.5%, respectively; P &lt; 0.05). These results indicate that porcine oocytes matured in pFF supplemented with FC using the rotating system have the ability to be penetrated by sperm and form MPF, and to develop to the blastocyst stage at higher rates, than oocytes cultured in the standard static maturation culture system. In conclusion, the pFF can be a sole and simple maturation culture medium useful for the in vitro production of blastocysts in pigs.


Sign in / Sign up

Export Citation Format

Share Document