132 Influence of oocyte retrieval methods and maturation media on invitro development of polar body extrusion in pig oocytes

2021 ◽  
Vol 33 (2) ◽  
pp. 174
Author(s):  
K. M. Honneysett ◽  
M. L. Mphaphathi ◽  
A. M. Maqhashu ◽  
E. C. Webb

Oocyte recovery is a reproductive technology that can be done by using two techniques, aspiration and slicing. Invitro maturation (IVM) is an additional reproductive technology used to advance an oocyte to a maturation stage; thereafter, it may be used during IVF. The objectives of the present study were (1) to compare two different oocyte retrieval methods (aspiration and slicing) from pig ovaries on oocyte quality and quantity, and (2) to compare three different IVM media [NCSU 37, TCM-199, and modified porcine follicular fluid (mpFF=porcine follicular fluid+FSH+LH] on oocytes’ polar body extrusion. During aspiration, an 18G needle was attached to a 10-mL syringe and all visible follicles were aspirated. During slicing, a surgical blade was used to slice the ovaries held in mDPBS. Follicular fluid collected from both methods was assessed for the presence of oocytes with the aid of a microscope. The collected oocytes were then categorized as Grade A, B, or C: Grade A=oocytes with compacted, multilayered cumulus cells and a homogeneous ooplasm; Grade B=oocytes with a compact cumulus cell layer with homogeneous ooplasm; Grade C=oocytes with a less compact cumulus cell layer with irregular ooplasm containing dark granules. The IVM media were placed in a four-well multidish; thereafter Grades A and B oocytes were allocated per treatment groups and matured for 44h. The treatment means were compared using the Fisher’s protected t-test least significant difference. The results showed significant differences between the grades of oocytes (P<0.05) with Grade A and B oocytes accounting for 50.8% of total oocytes (193.8) for aspiration and 58.7% of total oocytes (488.6) for slicing. The oocytes polar body extrusion was recorded as 25.3, 84.2, and 73.8% for NCSU 37 (P<0.05) and TCM-199 and mpFF respectively (P>0.05). In conclusion, the slicing method proved to be better than aspiration with regards to the retrieval of Grades A and B oocytes as well as the total number of oocytes retrieved. The TCM-199 and mpFF media had a higher percentage of oocytes with polar body extrusion than NCSU 37.

Author(s):  
Adek Amansyah

Objective: To evaluate the relationship between the number of LH receptor and the success of oocyte maturity in the process of in vitro maturation (IVM). Method: This experimental study was conducted in the Permata Hati Infertility Clinical Laboratory, Dr. Sardjito General Hospital, Yogyakarta, with the samples of 300 oocytes obtained through collecting immature cow’s oocytes from the abattoir and grouped the oocytes into 3 (three) groups based on the pattern of oocyte cumulus cells on the vesicle germinal stage 2 - 8 mm with three layers of cumulus cell. The sample of the cumulus cells from these three groups were taken and the LH receptor examination was done with immunohistochemistry. After that, the IVM process was performed to the three groups and its development for 24 hours was evaluated. Its maturation quality was evaluated with the emergence of the first polar body (1PB) and compared to the other groups and related to the number of LH receptor in the three groups. Result: The result of this study indicated that the oocyte cumulus cells showed a difference of function during IVM process. The maturity rate in this study showed that the number of LH receptor was related to the morphological pattern of oocyte cumulus cells with oocyte maturity. The maturity of the cumulus cells which 100% covered the oocyte was higher than that of the cumulus cells which > 50% and < 30% covered the oocytes, namely, 74% compared to 60% and 12%. The result of this study also showed that the average number of LH receptors in the three groups (A, B, and C) was 183.4, 78.8, and 24.0 respectively. A significant difference was found in the three groups (p < 0.0001). When related to IVM maturity, this difference showed that the bigger number of oocyte cumulus cells influenced the oocyte maturity. Conclusion: The number of LH receptor can be used as a prediction to determine the success of oocyte maturation in the process of in vitro maturation. [Indones J Obstet Gynecol 2013; 1-4:183-7] Keywords: IVM, LH receptor, oocyte cumulus cell


Author(s):  
H Hajarian ◽  
H Wahid ◽  
Y Rosnina ◽  
M Daliri ◽  
M Dashtizad ◽  
...  

The effectiveness of different cryodevices (open-pulled straw (OPS), electron microscopy grid (EMG), and Cryotop was evaluated for vitrification of immature bovine oocytes. Polar body, metaphase II stage (MII), survivability, and subsequent developmental rates were determined. Only oocytes with four or five layers of cumulus cells were used. Oocytes were equilibrated in two vitrification solutions - 1: 10% DMSO + 10% ethylene glycol (EG) for 30-45sec and 2: 20% DMSO + 20% EG +0.5M sucrose for 25sec -, mounted on one of the cryodevices and directly plunged into liquid nitrogen for 10 days. Immature vitrified oocytes using Cryotop showed the highest rates of polar body extrusion (PB) and nuclear maturity (MII); 41 and 58% respectively. Vitrified oocytes using OPS and EMG showed 26 and 32%; and 35 and 46% of PB and MII rates, respectively. The highest survivability resulted from Cryotop and EMG groups and no significant difference was found between them. Vitrified oocytes using Cryotop had the highest cleavage and blastocyst rates. All of the mean rates for vitrified immature oocytes were significantly lower than that of control group (P<0.05). The results of this study showed the superiority of Cryotop device for vitrification of immature bovine oocytes


2016 ◽  
Vol 28 (2) ◽  
pp. 223 ◽  
Author(s):  
N. Lewis ◽  
K. Hinrichs ◽  
D. Brison ◽  
R. Sturmey ◽  
D. Grove-White ◽  
...  

Production of equine embryos in vitro is gaining popularity, and many differences exist in composition of in vitro maturation (IVM) media. Metabolism of the cumulus-oocyte complex (COC) is essentially unknown in the horse. Here, we describe preliminary data on carbohydrate metabolism of the equine COC during IVM. COC, collected by scraping of the granulosa layer of all visible follicles of abattoir-derived ovaries, were held overnight (12–18 h) at room temperature (~20°C) and then placed in Maturation Medium (M199 with Earle’s salts, 10% FBS, with 25 μg mL–1 gentamicin and 5 mU mL–1 FSH). They were incubated singly in 10-μL droplets under mineral oil for 30 h at 38.3°C in 5% CO2 in air. Control droplets without COC were incubated in the same dish. After incubation, COC were removed and spent media kept at –80°C for later analysis. Oocytes were denuded of cumulus cells by pipetting in the presence of hyaluronidase and evaluated by light microscopy at 500×. Those with a visible polar body were classified as metaphase II (MII); oocytes with an intact oolemma and no polar body were classified as immature intact (INT) and those with an irregular or unapparent oolemma, or shrunken cytoplasm, were classed as degenerating (DEG). To adjust for variation in cumulus cell number, the stripped cumulus cells were frozen at –20°C and later analysed for DNA content using Picogreene. The spent media was analysed for depletion of glucose and appearance of lactate on a BMG Fluostar spectrophotometer using an enzyme-linked ultrafluorometric method. Data were expressed as pmol/ng DNA/hr and analysed by t-test, x2 and logistic regression. Thirty COC were cultured and analysed; 14 were classified as MII, 2 INT and 14 DEG. Seven COC (23%) depleted all the available glucose, indicating that the rate of glucose consumption in those 7 complexes was ≥1866 pmol/COC per hour. DNA content was positively correlated with glucose depletion (P = 0.02). In the COC that did not deplete available glucose, the ratio of glucose consumption:lactate production was 1.82, indicating that the major fate of exogenous glucose was production of lactate by glycolysis. In the 7 oocytes that depleted all the glucose, the ratio of glucose consumption:lactate production was 1.22. One explanation for this may be that when glucose was no longer available, it was conserved for other pathways. It was noteworthy that these COC had more cumulus cells (P < 0.01) and the maturation rate was 4/7 (57%). In the group of COC that did not deplete all of the glucose, there was no significant difference in glucose consumption (13.17 v. 12.25 pmol/ng DNA per hour; P > 0.4) or lactate production (21.48 v. 20.28 pmol/ng DNA per hour; P > 0.4) between COC in which the oocyte reached MII (10/23; 43%), and those which contained a degenerated oocyte at the end of culture, respectively. To the best of our knowledge, this is the first report documenting the metabolism of equine COC. These data underline the importance of further studies to determine optimal conditions for in vitro maturation of equine COC, especially in terms of glucose availability.


2014 ◽  
Vol 26 (2) ◽  
pp. 337 ◽  
Author(s):  
Satoko Matoba ◽  
Katrin Bender ◽  
Alan G. Fahey ◽  
Solomon Mamo ◽  
Lorraine Brennan ◽  
...  

The follicle is a unique micro-environment within which the oocyte can develop and mature to a fertilisable gamete. The aim of this study was to investigate the ability of a panel of follicular parameters, including intrafollicular steroid and metabolomic profiles and theca, granulosa and cumulus cell candidate gene mRNA abundance, to predict the potential of bovine oocytes to develop to the blastocyst stage in vitro. Individual follicles were dissected from abattoir ovaries, carefully ruptured under a stereomicroscope and the oocyte was recovered and individually processed through in vitro maturation, fertilisation and culture. The mean (± s.e.m.) follicular concentrations of testosterone (62.8 ± 4.8 ng mL–1), progesterone (616.8 ± 31.9 ng mL–1) and oestradiol (14.4 ± 2.4 ng mL–1) were not different (P > 0.05) between oocytes that formed (competent) or failed to form (incompetent) blastocysts. Principal-component analysis of the quantified aqueous metabolites in follicular fluid showed differences between oocytes that formed blastocysts and oocytes that degenerated; l-alanine, glycine and l-glutamate were positively correlated and urea was negatively correlated with blastocyst formation. Follicular fluid associated with competent oocytes was significantly lower in palmitic acid (P = 0.023) and total fatty acids (P = 0.031) and significantly higher in linolenic acid (P = 0.036) than follicular fluid from incompetent oocytes. Significantly higher (P < 0.05) transcript abundance of LHCGR in granulosa cells, ESR1 and VCAN in thecal cells and TNFAIP6 in cumulus cells was associated with competent compared with incompetent oocytes.


2006 ◽  
Vol 18 (2) ◽  
pp. 270
Author(s):  
C. Hanna ◽  
C. Long ◽  
M. Westhusin ◽  
D. Kraemer

The objectives of this study were to determine whether the percentage of canine oocytes that resume meiosis during in vitro maturation could be increased by either increasing culture duration or by removing approximately one-half of the cumulus cells 24 h after oocytes were placed into culture. Canine female reproductive tracts were collected from a local clinic and ovaries were minced in warm TL-HEPES. Oocytes with a consistently dark ooplasm and at least two layers of cumulus cells were selected, cultured in a basic canine oocyte in vitro maturation medium consisting of TCM-199 with Earl's salts, 2.92 mM Ca-lactate, 20 mM pyruvic acid, 4.43 mM HEPES, 10% fetal calf serum, 1% Penicillin/Streptomycin (GibcoBRL, Grand Island, NY, USA), and 5 μg/mL porcine somatotropin, and incubated at 38.5°C in 5% CO2 in humidified air. Treatment groups were randomly assigned and oocytes were cultured for 60, 84, or 132 h (Basic). From each of these groups, one-half of the oocytes were pipetted through a fine bore pipette to partially remove the cumulus cells 24 h after the start of culture (Basic–1/2). At the end of culture, all oocytes were denuded and the nuclear status was observed with Hoechst 33342 under ultraviolet fluorescence. All data were analyzed by ANOVA with P < 0.05. Since the canine oocyte is ovulated at the germinal vesicle (GV) stage of meiosis and requires up to five days to mature in the oviduct, it was hypothesized that an increased culture time would allow for more oocytes to undergo nuclear maturation to metaphase II (MII). It was also hypothesized that partial removal of cumulus cells would decrease the cumulus cell component in the ooplasm that sustains meiotic arrest, allowing for more oocytes to resume meiosis (RM = germinal vesicle breakdown to MII). Results within each treatment group indicate that there is no significant difference between culture duration and the percent of oocytes that mature to MII. Additionally, there was no significance in the percent of oocytes that resumed meiosis after partial cumulus cell removal. Taken together, these data suggest that neither treatment is effective in canine in vitro maturation systems, given the current maturation culture conditions. Table 1. Nuclear status* of oocytes for three time periods with or without partial cumulus cell removal


2008 ◽  
Vol 20 (1) ◽  
pp. 118 ◽  
Author(s):  
M. C. Gómez ◽  
N. Kagawa ◽  
C. E. Pope ◽  
M. Kuwayama ◽  
S. P. Leibo ◽  
...  

The ability to cryopreserve female gametes efficiently holds immense economic and genetic implications. The purpose of the present project was to determine if domestic cat oocytes could be cryopreserved successfully by use of the Cryotop method. We evaluated (a) cleavage frequency after in vitro fertilization (IVF) v. intracytoplasmic sperm injection (ICSI) of in vivo- and in vitro-matured oocytes after vitrification, and (b) fetal development after transfer of resultant embryos into recipients. In vivo-matured cumulus–oocyte complexes (COCs) were recovered from gonadotropin-treated donors at 24 h after LH treatment, denuded of cumulus cells, and examined for the presence of the first polar body (PB). In vitro-matured COCs were obtained from ovaries donated by local clinics and placed into maturation medium for 24 h before cumulus cells were removed and PB status was determined. Oocytes were cryopreserved by the Cryotop method (Kuwayama et al. 2005 Reprod. Biomed. Online 11, 608–614) in a vitrification solution consisting of 15% DMSO, 15% ethylene glycol, and 18% sucrose. For IVF, oocytes were co-incubated with 1 � 106 motile spermatozoa mL–1 in droplets of modified Tyrode's medium in 5% CO2/air at 38�C (Pope et al. 2006 Theriogenology 66, 59–71). For ICSI, an immobilized spermatozoon was loaded into the injection pipette, which was then pushed through the zona pellucida into the ooplasm. After a minimal amount of ooplasm was aspirated into the pipette, the spermatozoon was carefully expelled, along with the aspirated ooplasm. After ICSI, or at 5 or 18 h post-insemination, in vivo- and in vitro-matured oocytes, respectively, were rinsed and placed in IVC-1 medium (Pope et al. 2006). As assessed by normal morphological appearance after liquefaction, the survival rate of both in vivo- and in vitro-matured oocytes was >90% (93–97%). For in vitro-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 73% (16/22) and 53% (30/57), respectively, as compared to 68% (19/28) after ICSI of vitrified oocytes (P > 0.05). For in vivo-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes were 55% (18/33) and 35% (6/17), respectively, compared to 50% (10/20) after ICSI of vitrified oocytes (P > 0.05). At 18–20 h after ICSI, 18 presumptive zygotes and four 2-cell embryos derived from vitrified in vitro-matured oocytes and 19 presumptive zygotes produced from seven in vivo-matured and 12 in vitro-matured vitrified oocytes were transferred by laparoscopy into the oviducts of two recipients at 24–26 h after oocyte retrieval. The two recipients were 9-month-old IVF/ET-derived females produced with X-sperm sorted by flow cytometry. At ultrasonography on Day 22, both recipients were pregnant, with three live fetuses observed in one recipient and one live fetus seen in the second recipient. On Day 63 and Day 66 of gestation, four live kittens were born, without assistance, to the two recipients. The one male and three female kittens weighed an average of 131 g. In summary, in vivo viability of zygotes/embryos produced by ICSI of cat oocytes vitrified by the Cryotop method was demonstrated by the birth of live kittens following transfer to recipients.


2007 ◽  
Vol 19 (1) ◽  
pp. 286
Author(s):  
C. G. Grupen ◽  
T. S. Hussein ◽  
S. J. Schulz ◽  
D. T. Armstrong

Supplementing medium with follicular fluid (FF) during in vitro maturation (IVM) enhances the developmental competence of porcine oocytes, indicating that factors present in FF are beneficial to cytoplasmic maturation. Previous findings suggest that porcine FF contains high levels of superoxide dismutase activity and exerts a beneficial effect on cytoplasmic maturation by protecting oocytes from oxidative stress (Tatemoto et al. 2004 Biol. Reprod. 71, 1150–1157). Since oxidative stress is a potent inducer of apoptosis, the aim of the present study was to examine the temporal effects of FF during IVM on cumulus cell apoptosis and oocyte developmental competence. Ovaries of prepubertal pigs were collected from a local abattoir and antral follicles, 3 to 7 mm in diameter, were aspirated. Cumulus–oocyte complexes (COCs) with at least 3 uniform layers of compact cumulus cells (CCs) were recovered, washed, and transferred to maturation medium (MM) with or without 25% FF. At 22 h of IVM, COCs from each group were washed and transferred to fresh MM with or without 25% FF, forming 4 groups: -FF/-FF, -FF/+FF, +FF/-FF, and +FF/+FF. Cohorts of COCs were TUNEL stained at 22 and 44 h of IVM using the In Situ Cell Death Detection kit (Roche Diagnostics, Castle Hill, NSW, Australia) according to the manufacturer&apos;s instructions, and apoptotic CCs were visualized using confocal microscopy. Oocytes denuded at 44 h, that had a polar body, were treated with ionomycin and 6-dimethylaminopurine to induce parthenogenetic development, and were cultured for 7 days in NCSU-23 medium at 38.5&deg;C in 5&percnt; O2, 5&percnt; CO2, and 90&percnt; N2. Data were subjected to ANOVA and Tukey&apos;s post-hoc test. At 22 h of IVM, the presence of FF reduced the proportion of apoptotic CCs in COCs (2.1&percnt; vs. 4.6&percnt;). COCs matured with FF from 22 to 44 h of IVM had much lower proportions of apoptotic CCs (&plus;FF/&plus;FF: 0.9&percnt;; &minus;FF/&plus;FF: 2.6&percnt;) compared with those matured without FF (&plus;FF/&minus;FF: 10.3&percnt;; &minus;FF/&minus;FF: 17.8&percnt;). The rate of maturation to the metaphase-II stage was greater when oocytes were matured with FF from 0 to 22 h of IVM (&minus;FF/&minus;FF: 68.6&percnt;; &minus;FF/&plus;FF: 72.8&percnt;; &plus;FF/&minus;FF: 89.2&percnt;; &plus;FF/&plus;FF: 86.2&percnt;). Maturation without FF for the entire IVM interval reduced the proportion of activated oocytes that formed blastocysts compared with the other groups (&minus;FF/&minus;FF: 25.1&percnt;; &minus;FF/&plus;FF: 44.6&percnt;; &plus;FF/&minus;FF: 46.6&percnt;; &plus;FF/&plus;FF: 47.3&percnt;). Despite a 4-fold difference in the proportion of apoptotic CCs between COCs of the &plus;FF/&minus;FF and &minus;FF/&plus;FF groups, exposure to FF for the first or second half of IVM was as beneficial to oocyte developmental competence as exposure to FF for the entire IVM interval. This suggests that the protective effect of FF in reducing oxidative stress on oocytes during IVM is distinct from the effect on oocyte developmental competence.


2018 ◽  
Vol 30 (1) ◽  
pp. 198
Author(s):  
G. Santos ◽  
M. P. Bottino ◽  
M. B. D. Ferreira ◽  
J. C. Silveira ◽  
A. C. F. C. M. Avila ◽  
...  

The aim was to evaluate the effect of subclinical mastitis by somatic cell count (SCC) on follicular dynamics, ovulation, oocyte and cumulus cell quality, exosome size and concentration in milk-producing cows. Crossbred cows (Bos taurus × Bos indicus; that is, Holstein × Gyr) were randomly allocated to control (SCC <200,000 cells mL−1] and mastitis (SCC >400,000 cells mL−1) groups. In experiment 1 (follicular dynamics), cows (n = 57) were submitted to ultrasonographic evaluations every 24 h, after removal of an intravaginal progesterone device (Day 8) up to Day 10. From Day 10, ultrasound evaluations were performed every 12 h, until ovulation or until 96 h after progesterone device withdrawal, in order to follow final dominant follicle growth and ovulation. In experiment 2 (oocyte, cumulus cells, and follicular fluid evaluation), cows (n = 23) were submitted to follicular aspirations, preceded by synchronization of the emergence of the follicular wave. The levels of target genes in cumulus cells (BCL2, BAX, PI3K, PTEN, FOXO3) were evaluated by RT-qPCR. In the follicular fluid, the exosomes were isolated for evaluation of particle size. Data were analysed by the Glimmix procedure of SAS (SAS Institute Inc., Cary, NC, USA). Ovulation rate (P = 0.09) was higher in control cows [control 77.42% (24/31) and mastitis 57.69% (15/26)]. Viable oocyte rate (P = 0.01) was also higher in control cows [control 59.1% (130/220) and mastitis 41.9% (125/298)]. The dynamics of follicular growth did not differ between groups. The number of degenerate oocytes (P = 0.001) was higher in cows of the mastitis group. In the evaluation of cumulus cell gene expression, there was a higher abundance of BAX transcripts (P = 0.003) in cells of mastitis cows. Additionally, the mean and mode of exosome diameter in mastitis cows were smaller (P = 0.03 and P = 0.02, respectively). In conclusion, ovulation rate, oocyte quality, and follicular fluid exosome diameter were lower in cows with subclinical mastitis, demonstrating a link between mammary gland sanitary status and reproduction.


Reproduction ◽  
2008 ◽  
Vol 136 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Ikkou Kawashima ◽  
Tetsuji Okazaki ◽  
Noritaka Noma ◽  
Masahide Nishibori ◽  
Yasuhisa Yamashita ◽  
...  

In this study, we collected follicular fluid, granulosa cells, and cumulus cells from antral follicles at specific time intervals following equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG) treatment of gilts. The treatment with eCG increased the production of estrogen coordinately with up-regulated proliferation of granulosa and cumulus cells. eCG also induced the expression ofLHCGRandPGRin cumulus cells and progesterone accumulation was detected in follicular fluid prior to the LH/hCG surge. Moreover, progesterone and progesterone receptor (PGR) were critical for FSH-inducedLHCGRexpression in cumulus cells in culture. The expression ofLHCGRmRNA in cumulus cells was associated with the ability of LH to induce prostaglandin production, release of epidermal growth factor (EGF)-like factors, and a disintegrin and metalloprotease with thrombospondin-like repeats 1 expression, promoting cumulus cell oocyte complexes (COCs) expansion and oocyte maturation. Based on the unique expression and regulation ofPGRandLHCGRin cumulus cells, we designed a novel porcine COCs culture system in which hormones were added sequentially to mimic changes observedin vivo. Specifically, COCs from small antral follicles were pre-cultured with FSH and estradiol for 10 h at which time progesterone was added for another 10 h. After 20 h, COCs were moved to fresh medium containing LH, EGF, and progesterone. The oocytes matured in this revised COC culture system exhibited greater developmental competence to blastocyst stage. From these results, we conclude that to achieve optimal COC expansion and oocyte maturation in culture the unique gene expression patterns in cumulus cells of each species need to be characterized and used to increase the effectiveness of hormone stimulation.


Sign in / Sign up

Export Citation Format

Share Document