Laboratory and field studies on the degradation of fipronil in a soil

Soil Research ◽  
2002 ◽  
Vol 40 (7) ◽  
pp. 1095 ◽  
Author(s):  
Guang-Guo Ying ◽  
Rai Kookana

Degradation of a new insecticide/termiticide, fipronil, in a soil was studied in the laboratory and field. Three metabolites of fipronil (desulfinyl, sulfide, and sulfone derivatives) were identified from soils after treatment. Laboratory studies showed that soil moisture content had a great effect on the degradation rate of fipronil and products formed. High soil moisture contents (>50%) favored the formation of a sulfide derivative of fipronil by reduction, whereas low soil moisture (<50%) and well-aerated conditions favored the formation of fipronil sulfone by oxidation. Microorganisms in soil accelerated the degradation of fipronil to sulfide and sulfone derivatives. The third transformation product, a desulfinyl derivative, was formed by photodecomposition of fipronil in water and on the soil surface under sunlight. The desulfinyl derivative degraded rapidly in field soils with a half-life of 41–55 days compared with an average half-life of 132 days for fipronil. The half-life of the 'total toxic component' (fipronil and its metabolites) in field soil was 188 days on average.

Weed Science ◽  
1995 ◽  
Vol 43 (4) ◽  
pp. 678-684 ◽  
Author(s):  
William G. Johnson ◽  
Terry L. Lavy ◽  
Edward E. Gbur

Laboratory studies were conducted to determine the relative sorption, mobility, and degradation rates of triclopyr and 2,4-D on two surface soils and two subsoils from the rice-producing areas of Arkansas. Triclopyr sorption was slightly greater than 2,4-D sorption. However, mobility of the herbicides on a given soil did not differ. Sorption of both herbicides was greatest and mobility lowest on a subsoil with the lowest pH. Triclopyr degradation rates were lower than 2,4-D degradation rates in a dark incubator. The average half life was 138 d for triclopyr and 21 d for 2,4-D. High soil moisture content (0 versus 100 kPa water tension) increased the rate of 2,4-D degradation. Triclopyr degraded more rapidly at 30 C than at 15 C. The dissipation rates of both herbicides were lowest on the soil on which sorption was greatest.


Weed Science ◽  
1991 ◽  
Vol 39 (1) ◽  
pp. 78-82 ◽  
Author(s):  
Loston Rowe ◽  
James J. Kells ◽  
Donald Penner

Greenhouse and field studies were conducted to determine the influence of herbicide rate, hybrid variability, and soil moisture on the effectiveness of CGA-154281 in protecting corn seedlings from metolachlor injury. High rates of metolachlor caused significant injury to seedlings of sensitive corn hybrids. However, with metolachlor plus CGA-154281, very few injury symptoms were observed, even with the 7.8 kg ha–1rate and the most sensitive hybrid. Corn seedlings were not injured by metolachlor plus CGA-154281 at the highest soil moisture level evaluated, whereas those treated with metolachlor alone showed 70% injury. Metolachlor injury increased as soil moisture content increased. In the greenhouse, CGA-154281 did not protect any of the eight weed species tested against injury by 2.2 kg ha–1metolachlor. In laboratory studies, CGA-154281 did not alter the absorption of14C-metolachlor during an 8-h period. Qualitative comparison of the metabolism of metolachlor in the presence or absence of the protectant indicated that metolachlor was metabolized to a more polar metabolite, believed to be a glutathione conjugate. However, CGA-154281 significantly enhanced the rate of metabolism of metolachlor in three of the four hybrids tested. Metolachlor metabolism activity may already have been functioning at a maximum level in the unaffected hybrid.


1951 ◽  
Vol 4 (3) ◽  
pp. 211
Author(s):  
GC Wade

The disease known as white root rot affects raspberries, and to a less extent loganberries, in Victoria. The causal organism is a white, sterile fungus that has not been identified. The disease is favoured by dry soil conditions and high soil temperatures. It spreads externally to the host by means of undifferentiated rhizomorphs; and requires a food base for the establishment of infection. The spread of rhizomorphs through the soil is hindered by high soil moisture content and consequent poor aeration of the soil.


1954 ◽  
Vol 5 (3) ◽  
pp. 365 ◽  
Author(s):  
DC Wark

Garden peas commonly carry a nucleus of plants with bacterial blight (Pseudomonas pisi Sackett) in a masked form. When such plants were exposed to low temperature, either by natural frosting or by dipping the tops of the plants in cold liquids, the number of bacteria in the tissues increased rapidly and typical symptoms of the disease occurred in a few days. Soil type and soil moisture content also influenced the development of the disease, which was more marked in peas grown on a red loam from the Dickson Experiment Station than in peas grown on a prepared potting soil. Disease symptoms developed more rapidly a t high soil moisture content than at lower soil moisture content, following exposure to high atmospheric humidity.


1999 ◽  
Vol 13 (2) ◽  
pp. 341-346 ◽  
Author(s):  
Thomas C. Mueller ◽  
David R. Shaw ◽  
William W. Witt

The dissipation of four commonly used soil-applied herbicides was examined in a standardized field experiment in three southern states (Kentucky, Mississippi, and Tennessee). Averaged over the three soils and 2 yr, the relative order of increasing half-life defined as time for 50% disappearance in days (DT50) was acetochlor (6.3 d) = alachlor (6.3 d) = SAN 582 (7.3 d) < metolachlor (13.7 d). Metolachlor was the most persistent in the soil surface, and this could potentially translate into greater duration of weed control into the growing season. All examined herbicides had a DT50that averaged less than 14 d in all states in both years, so full-season weed control of susceptible species would not be expected. Rapid herbicide degradation was encouraged in these field sites by adequate to excessive soil moisture and warm temperatures throughout the sampling interval. The soils also were light textured, and the lower adsorption of the herbicide allowed for degradation ease and perhaps leaching below the sampling depth.


2020 ◽  
Author(s):  
Elena Zubieta ◽  
Juan Larrasoaña ◽  
Rafael Giménez ◽  
Alaitz Aldaz ◽  
Javier Casalí

&lt;p&gt;In gully erosion, the soil detached by the action of the erosive flow can be transported over long distances along the drainage network of the watershed. In this long way, the eroded material can be redistributed and/or deposited on the soil surface, and then eventually buried by eroded material from subsequent erosion events. Likewise, the variability of the soil (i.e., in texture and moisture content) over which this material moves can be considerable. The presence of the eroded material could be detected through magnetic tracers attached/mixed with the eroded soil. In this experiment, the degree to which the magnetic signal of the magnetite is conditioned by (i) the burying tracer depth, (ii) the texture and moisture content of the soil covering the tracer and (iii) the tracer concentration was evaluated.&lt;/p&gt;&lt;p&gt;The study was carried out in the lab in different containers (0.5 x 0.5 x 0.3 m&lt;sup&gt;3&lt;/sup&gt;). Each container was filled with a given soil. In the filling process, a 0.5-cm layer of a soil-magnetite mixture of a certain concentration was interspersed in the soil profile at a certain depth. Overall, 3 different soil:tracer concentrations (1000:1, 200:1, 100:1), 4 tracer burying depths (0 cm, 3 cm, 5 cm and 10 cm from soil surface), and &amp;#160;2 contrasting soils (silty clay and sandy clay loam) were used. In each case, the magnetic susceptibility was measured with a magnetometer (MS3 by Bartington Instruments). Experiments were repeated with different soil moisture contents (from field capacity to dry soil).&lt;/p&gt;&lt;p&gt;If the tracer is located under the soil surface a minimum soil:tracer concentration of 200:1 is required for its correct &amp;#160;detection from the surface using a magnetometer. The intensity of the magnetic signal decreases dramatically with the vertical distance &amp;#160;of the tracer from the soil&amp;#160; surface (burying depth). The maximum detection depth of the tracer magnetic signal is strongly dependent on the natural magnetic susceptibility of the soil which hides the own tracer signal. Variation in soil moisture content does not significantly affect the magnetic signal. For extensive field studies the soil-tracer volume to be handled would be very high. Therefore, it is necessary to explore new tracer application techniques.&lt;/p&gt;


1994 ◽  
Vol 4 (4) ◽  
pp. 225 ◽  
Author(s):  
JC Valette ◽  
V Gomendy ◽  
J Marechal ◽  
C Houssard ◽  
D Gillon

The aim of this study was to analyse the effects of duff thickness and moisture content, and of soil moisture content on the transfer of heat in the soil. The experimental design used intact soil blocks with their duff layer, subjected to controlled fires of variable very low intensities of up to 100 kW m-1. The fuel on the surface was composed of needles and twigs of Pinus pinaster. The maximum temperatures measured within the fuel were of the order of 650 degrees C and were independent of the fireline intensities. For fires with fireline intensity of the order of 30 kW m-1, the presence of the duff layer reduced from 330 degrees C the temperature rise at the soil surface. Duff thickness played only a secondary role, but increasing moisture content reinforced its insulating effect, so that the temperature rise was 2.5 times less at 1 cm depth in the duff when the moisture content exceeded 70% dry weight, than when the moisture content was less than 30%. For more intense fires (> 50 kW m-1) that produced longer-lasting surface heating, duff thickness and moisture content played an important role in significantly reducing the temperature rise at the soil surface (range 140 degrees C to 28 degrees C). Because of low soil thermal conductivity, temperature attenuation with increasing depth was noticed. In the case of low intensity fires (< 30 kW m-1) in the absence of a duff layer, the maximum temperatures were reduced from 350 degrees C at the surface to 7 degrees C at 3.5 cm. The temperature rise in the soil decreased with depth according to a negative exponential relation. The rate constant of this relation was greater when the initial surface temperature and the soil moisture content were higher. For the soil studied, and under the moisture conditions encountered (between 7 and 19% of dry weight), the rate constant could be predicted with acceptable precision (r2 = 0.67), if the surface soil temperature rise and the soil moisture content were known. In these experimental fires, which were carried out when the air temperature did not exceed 20 degrees C, lethal temperatures (> 60 degrees C) were measured in the upper few centimetres of the duff layer in very low-intensity fires, and in the upper few centimetres of the soil (where nutrients are most concentrated and biological activity most intense) in the slightly more intense fires. The fire intensities were always very moderate, and of the order of magnitude df those encountered in the prescribed burns conducted on fuel-breaks of the french Mediterranean area. Their impact on the surface of the forest soil, in terms of lethal temperatures transmitted to the horizon rich in organic matter, are not negligible. In contrast, below 3 to 5 cm depth, prescribed burns, conducted under the conditions of the experiments, would not lead to significant change to nutrients or microfaunal or microfloral activity; in particular, root tips would not be subjected to heat stress sufficient to kill them.


1965 ◽  
Vol 11 (3) ◽  
pp. 483-489 ◽  
Author(s):  
E. A. Peterson ◽  
J. W. Rouatt ◽  
H. Katznelson

The influence of soil moisture on the microbial population of rhizosphere soil and of the root surface (rhizoplane) of wheat was studied under controlled conditions. Fertile soil adjusted to 30%, 60%, and 90% of its moisture-holding capacity was used. Bacterial counts and numbers of specific "physiological groups" of bacteria all increased in the rhizosphere and the rhizoplane as soil moisture decreased. Taxonomic studies of the bacteria isolated from the rhizoplane showed a marked preponderance of species of Pseudomonas under conditions of low and intermediate soil moisture content. On the other hand species of Arthrobacter, Bacillus, and Cytophaga dominated the population at high soil moisture. Although the distribution of fungi on the roots was very similar for the low and intermediate moisture levels, there was some restriction of colonization at the high level. Species of Mortierella, Rhizopus, Chaetomium, Curvularia, and Helminthosporium were not represented among isolates from roots at high soil moisture and the relative incidence of species of Fusarium and Phoma decreased. However, high soil moisture favored root colonization by species of Rhizoctonia and sterile dark fungi.


2005 ◽  
Vol 48 (5) ◽  
pp. 1979-1986 ◽  
Author(s):  
A. L. Kaleita ◽  
L. F. Tian ◽  
M. C. Hirschi

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1731 ◽  
Author(s):  
Michał Śpitalniak ◽  
Krzysztof Lejcuś ◽  
Jolanta Dąbrowska ◽  
Daniel Garlikowski ◽  
Adam Bogacz

Climate change induces droughts that are becoming more intensive and more frequent than ever before. Most of the available forecast tools predict a further significant increase in the risk of drought, which indicates the need to prepare solutions to mitigate its effects. Growing water scarcity is now one of the world’s leading challenges. In agriculture and environmental engineering, in order to increase soil water retention, soil additives are used. In this study, the influence of a newly developed water absorbing geocomposite (WAG) on soil water retention and soil matric potential was analyzed. WAG is a special element made from geotextile which is wrapped around a synthetic skeleton with a superabsorbent polymer placed inside. To describe WAG’s influence on soil water retention and soil matric potential, coarse sand, loamy sand, and sandy loam soils were used. WAG in the form of a mat was used in the study as a treatment. Three kinds of samples were prepared for every soil type. Control samples and samples with WAG treatment placed at depths of 10 cm and 20 cm were examined in a test container of 105 × 70 × 50 cm dimensions. The samples had been watered and drained, and afterwards, the soil surface was heated by lamps of 1100 W total power constantly for 72 h. Soil matric potential was measured by Irrometer field tensiometers at three depths. Soil moisture content was recorded at six depths: of 5, 9, 15, 19, 25, and 30 cm under the top of the soil surface with time-domain reflectometry (TDR) measurement devices. The values of soil moisture content and soil matric potential were collected in one-minute steps, and analyzed in 24-h-long time steps: 24, 48, and 72 h. The samples with the WAG treatment lost more water than the control samples. Similarly, lower soil matric potential was noted in the samples with the WAG than in the control samples. However, after taking into account the water retained in the WAG, it appeared that the samples with the WAG had more water easily available for plants than the control samples. It was found that the mechanism of a capillary barrier affected higher water loss from soil layers above those where the WAG had been placed. The obtained results of water loss depend on the soil type used in the profile.


Sign in / Sign up

Export Citation Format

Share Document