Soil properties as predictors of yield response of clover (Trifolium subterraneum L.) to added P in soils of varying P sorption capacity

Soil Research ◽  
2003 ◽  
Vol 41 (4) ◽  
pp. 653 ◽  
Author(s):  
R. F. Brennan ◽  
M. D. A. Bolland

Thirty-five unfertilised soils collected in south-western Australia were used to measure the effect of soil properties on (i) shoot yield responses of 50-day-old clover (Trifolium subterraneum L. cv. Nungarin) plants to applied phosphorus (P), and (ii) extractability of bicarbonate soil test P (slope of the linear relationship between Colwell P and the amount of P applied). Data for the relationship between shoot yield and the amount of P applied were fitted to a rescaled Mitscherlich equation to calculate the amount of P required to produce 50% and 90% of the maximum yield (P50% and P90%) and determine the curvature (c) and n coefficients of the equation. When the value of n is 1.00, the response curve is exponential, and as the value of n increases above 1.00 the response curve becomes more sigmoidal. The c, n, P50%, P90%, and extractability values were related to properties of the 35 soils.There was a significant (P < 0.05) trend for the values of c and extractability to decrease as the capacity of the soil to sorb P increased. Consequently, as the soil sorbed more P, the trend was that (1) more P needed to be applied to produce the same yield, so both P50% and P90% tended to significantly (P < 0.05) increase; (2) shoot yield responses to applied P became more sigmoidal so the value of the n coefficient tended to significantly (P < 0.05) increase; (3) more P needed to be applied to a soil to produce the same soil test P value; and (4) larger soil test P values were needed to produce the same yield. No single soil property adequately predicted P50%, P90%, extractability, c, or n. Stepwise multiple regression indicated that (1) clay content and P buffer capacity (PBC) of soil together accounted for 48% of the variation in P50%, 56% of the variation in P90%, and 52% of the variation in c; (2) PBC and soil pH together accounted for 17% of the variation in n; and (3) PBC, percentage clay and percentage organic carbon content of soil together accounted for 68% of the variation in extractability.

2000 ◽  
Vol 40 (1) ◽  
pp. 107 ◽  
Author(s):  
M. A. Hegney ◽  
I. R. McPharlin ◽  
R. C. Jeffery

Field experiments were conducted over 3 years at 21 sites of varying phosphorus (P) fertiliser histories (Colwell P range: 9–170 g/g) in the Manjimup–Pemberton region of Western Australia to examine the effects of freshly applied (current) and previously applied (residual or soil test ) P on the yield of potatoes (Solanum tuberosum L. cv. Delaware). Phosphorus was placed (banded) at planting, 5 cm either side of and below seed planted at 20 cm depth, at levels up to 800 kg P/ha. Exponential [y = a – b exp (–cx)] regressions were fitted to the relationship between tuber yield and level of applied P at all sites. Weighted (according to the variance) exponential regressions were fitted to the relationship between yield responsiveness (b/a, from the yield versus level of applied P relationship) and Colwell P, and two P sorption indices—phosphate adsorption (P-adsorb) and a modified phosphate retention index (PRI(100)). A weighted exponential regression was also fitted to the relationship between the level of applied P required for 95% of maximum yield (Popt; also from yield versus level of applied P) and P-adsorb and PRI(100). A weighted linear regression best described the relationship between Popt and Colwell P. Phosphorus application significantly (P<0.10; from the regression analysis) increased total tuber yield at all but 4 sites. Marketable tuber yield response paralleled total tuber yield response at all sites and averaged 85% of total yields (range 63–94%). Colwell P gave a good prediction of the likely yield response of potatoes across all sites. For example, the yield responsiveness (b/a) of potatoes in relation to Colwell P decreased exponentially from 1.07 at 0 g/g to 0, or no yield response, at 157 g/g Colwell P (R2 = 0.96) i.e. the critical Colwell P for 95% of maximum yield of potatoes on soils in the Manjimup–Pemberton region. Similarly, no yield response (b/a = 0) would be expected at a P-adsorb of 180 g/g (R2 = 0.69) or a PRI(100) of 46 (R2 = 0.61). The level of applied P required for 95% of maximum yield (Popt) decreased linearly from 124 kg/ha on infertile sites (<5 g/g Colwell P) to 0 kg P/ha at 160 g/g Colwell P (R2 = 0.66). However, a more accurate prediction of Popt was possible using either P-adsorb or PRI(100). For example, Popt increased exponentially from 0 kg/ha at <181 g/g P-adsorb (high P soils) to 153 kg/ha at a P-adsorb of 950 g/g (low P soils) (R2 = 0.75) and exponentially from 0 kg/ha at a PRI(100) of <48 (high P soils) to 147 kg/ha at a PRI(100) of 750 (low P soils) (R2 = 0.80). PRI(100) is preferred as a soil test to predict Popt for potatoes in the Manjimup–Pemberton region because of its superior accuracy to the Colwell test. It is also preferred to P-adsorb because of both superior accuracy and lower cost as it is a simpler and less time consuming procedure — features which are important for adoption by commercial soil testing services. A multiple regression including Colwell P, P-adsorb and PRI(100) only improved the prediction of Popt slightly (R2 = 0.89) over PRI(100) alone. When tubers were 10 mm long, the total P in petioles of youngest fully expanded leaves which corresponded with 95% of maximum yield was 0.41% (dry weight basis). These results show that, while the Colwell soil P test is a useful predictor of the responsiveness of potato yield to applied P across a range of soils in the Manjimup–Pemberton region, consideration of both the soil test P value and the P sorption capacity of the soil, as determined here by PRI(100), is required for accurate predictions of the level of P fertiliser required to achieve maximum yields on individual sites.


2004 ◽  
Vol 142 (5) ◽  
pp. 553-560 ◽  
Author(s):  
T. M. SHATAR ◽  
A. B. MCBRATNEY

An algorithm to fit boundary lines, using cubic smoothing splines, was written and used to identify yield responses to changes in soil properties. This method involves fitting a curve that represents the maximum yield response to each predictor value, which represents the yield potential at each soil property value. Boundary-line yield responses to individual soil properties were found to differ from responses found by fitting curves through the data scatter. The effects of correlated variables appeared to be lessened using the boundary line approach. Multivariate boundary-line models, based on the Law of the Minimum, were found to be useful for the identification of site-specific causes of yield variation and yield potentials. The boundary line was found to be a useful complement to more traditional data analysis techniques.


2007 ◽  
Vol 47 (7) ◽  
pp. 801 ◽  
Author(s):  
M. D. A. Bolland ◽  
I. F. Guthridge

Fertiliser phosphorus (P) and, more recently, fertiliser nitrogen (N) are regularly applied to intensively grazed dairy pastures in south-western Australia. However, it is not known if applications of fertiliser N change pasture dry matter (DM) yield responses to applied fertiliser P. In three Western Australian field experiments (2000–04), six levels of P were applied to large plots with or without fertiliser N. The pastures were rotationally grazed. Grazing started when ryegrass plants had 2–3 leaves per tiller. Plots were grazed in common with the lactating dairy herd in the 6-h period between the morning and afternoon milking. A pasture DM yield response to applied N occurred for all harvests in all three experiments. For the two experiments on P deficient soil, pasture DM yield responses also occurred to applications of P. For some harvests when no fertiliser N was applied, probably because mineral N in soil was so small, there was a small, non-significant pasture DM response to applied P and the P × N interaction was highly significant (P < 0.001). However, for most harvests there was a significant pasture DM response to both applied N and P, and the P × N interaction was significant (P < 0.05–0.01), with the response to applied P, and maximum yield plateaus to applied P, being smaller when no N was applied. Despite this, for the significant pasture DM responses to applied P, the level of applied P required to produce 90% of the maximum pasture DM yield was mostly similar with or without applied N. Evidently for P deficient soils in the region, pasture DM responses to applied fertiliser P are smaller or may fail to occur unless fertiliser N is also applied. In a third experiment, where the soil had a high P status (i.e. more typical of most dairy farms in the region), there was only a pasture DM yield response to applied fertiliser N. We recommend that fertiliser P should not be applied to dairy pastures in the region until soil testing indicates likely deficiency, to avoid developing unproductive, unprofitable large surpluses of P in soil, and reduce the likelihood of P leaching and polluting water in the many drains and waterways in the region. For all three experiments, critical Colwell soil test P (a soil test value that was related to 90% of the maximum pasture DM yield), was similar for the two fertiliser N treatments.


1996 ◽  
Vol 36 (7) ◽  
pp. 897 ◽  
Author(s):  
IR McPharlin ◽  
RC Jeffery ◽  
DH Pitman

The phosphorus (P) requirements of crisphead lettuce (Lactuca sativa L. cv. Oxley) was measured over 2 consecutive winter plantings using superphosphate that was freshly applied and applied 9 months before planting, at 0-600 kg/ha on a newly cleared Karrakatta sand of low natural P fertility. There was a significant (P<0.001) head yield response to level of applied P in both years. Phosphorus uptake by whole plants and plant shoots was related to level of applied P in Mitscherlich relationships (R2 = 0.88). Phosphorus recovery efficiency (fertiliser P uptake by shoots/P applied, both in kg/ha) by shoots decreased from 0.16 at 50 to 0.04 at 600 kg applied P/ha. Phosphorus recovery efficiency by whole plants (shoots plus roots) decreased from 0.18 at 50 to 0.05 at 600 kg P/ha. The level of freshly applied P required for either 95 or 99% of maximum relative yield over the 2 years (maximum yield, 86 t/ha) was 276 and 427 kg P/ha (Mitscherlich relationship, R2 = 0.95), respectively at <10 �g/g soil test P (newly cleared sites). The marketable yield was 82 and 95% of total yield at 276 and 427 kg P/ha respectively. Bicarbonate-soluble P extracted from the top 15 cm of soil was determined on residual P sites over 2 years where P was applied at 0-600 kg/ha. These soil test levels were related to head yield in a Mitscherlich relationship (R2 = 0.88). The critical soil test P values required for either 95 or 99% of maximum relative yield, over the 2 years, were 80 and 115 �g/g, respectively. Phosphorus in the wrapper leaf at early heading required for 95 or 99% of maximum yield was 0.59 � 0.03 and 0.61 � 0.03% (spline regression, R2 = 0.80), respectively. Soil and plant testing could be used to assist in reducing fertiliser costs, improving utilisation of freshly- and previously-applied fertiliser P by lettuce and reducing P losses to water systems on the Swan Coastal Plain in Western Australia.


2019 ◽  
Vol 70 (12) ◽  
pp. 1080 ◽  
Author(s):  
Graeme A. Sandral ◽  
Andrew Price ◽  
Shane M. Hildebrand ◽  
Christopher G. Fuller ◽  
Rebecca E. Haling ◽  
...  

In recent decades several pasture legumes have been available in southern Australia as potential alternatives to the most widely used annual pasture legume Trifolium subterraneum. Little is known about their soil phosphorus (P) requirements, but controlled environment experiments indicate that at least some may differ in their P fertiliser requirements. In this study, pasture legume varieties, including T. subterraneum as the reference species, were grown at up to four sites in any one year over a 3-year period (in total, seven site × year experiments) to measure herbage growth responses in spring to increased soil P availability. A critical soil test P concentration (corresponding to 95% maximum yield) was estimated for 15 legumes and two pasture grasses. The critical soil P requirements of most of the legumes did not differ consistently from that of T. subterraneum, indicating their soil fertility management should follow the current soil test P guidelines for temperate Australian pastures. However, the critical P requirement of Medicago sativa was higher than that of T. subterraneum, but remains ill-defined because extractable soil P concentrations in these experiments were often not high enough to permit a critical P estimate. Three forage crop legumes (Trifolium incarnatum, Trifolium purpureum, Trifolium vesiculosum) and two pasture legumes (Ornithopus compressus, Ornithopus sativus) had lower critical soil test P concentrations. It may be feasible to manage pastures based on these species to a lower soil test P benchmark without compromising yield.


2002 ◽  
Vol 42 (2) ◽  
pp. 149 ◽  
Author(s):  
M. D. A. Bolland ◽  
W. J. Cox ◽  
B. J. Codling

Dairy and beef pastures in the high (>800 mm annual average) rainfall areas of south-western Australia, based on subterranean clover (Trifolium subterraneum) and annual ryegrass (Lolium rigidum), grow on acidic to neutral deep (>40 cm) sands, up to 40 cm sand over loam or clay, or where loam or clay occur at the surface. Potassium deficiency is common, particularly for the sandy soils, requiring regular applications of fertiliser potassium for profitable pasture production. A large study was undertaken to assess 6 soil-test procedures, and tissue testing of dried herbage, as predictors of when fertiliser potassium was required for these pastures. The 100 field experiments, each conducted for 1 year, measured dried-herbage production separately for clover and ryegrass in response to applied fertiliser potassium (potassium chloride). Significant (P<0.05) increases in yield to applied potassium (yield response) were obtained in 42 experiments for clover and 6 experiments for ryegrass, indicating that grass roots were more able to access potassium from the soil than clover roots. When percentage of the maximum (relative) yield was related to soil-test potassium values for the top 10 cm of soil, the best relationships were obtained for the exchangeable (1 mol/L NH4Cl) and Colwell (0.5 mol/L NaHCO3-extracted) soil-test procedures for potassium. Both procedures accounted for about 42% of the variation for clover, 15% for ryegrass, and 32% for clover + grass. The Colwell procedure for the top 10 cm of soil is now the standard soil-test method for potassium used in Western Australia. No increases in clover yields to applied potassium were obtained for Colwell potassium at >100 mg/kg soil. There was always a clover-yield increase to applied potassium for Colwell potassium at <30 mg/kg soil. Corresponding potassium concentrations for ryegrass were >50 and <30 mg/kg soil. At potassium concentrations 30–100 mg/kg soil for clover and 30–50 mg/kg soil for ryegrass, the Colwell procedure did not reliably predict yield response, because from nil to large yield responses to applied potassium occurred. The Colwell procedure appears to extract the most labile potassium in the soil, including soluble potassium in soil solution and potassium balancing negative charge sites on soil constituents. In some soils, Colwell potassium was low indicating deficiency, yet plant roots may have accessed potassum deeper in the soil profile. Where the Colwell procedure does not reliably predict soil potassium status, tissue testing may help. The relationship between relative yield and tissue-test potassium varied markedly for different harvests in each year of the experiments, and for different experiments. For clover, the concentration of potassium in dried herbage that was related to 90% of the maximum, potassium non-limiting yield (critical potassium) was at the concentration of about 15 g/kg dried herbage for plants up to 8 weeks old, and at <10 g/kg dried herbage for plants older than 10–12 weeks. For ryegrass, there were insufficient data to provide reliable estimates of critical potassium.


1973 ◽  
Vol 53 (2) ◽  
pp. 205-211 ◽  
Author(s):  
W. N. BLACK ◽  
R. P. WHITE

The effects of N, P, K, and manure factorially applied to potato (Solanum tuberosum L.) yields, starch content, and soil and tissue nutrient levels were evaluated on continuous plots over 12 yr in a 4-yr potato, grain, hay, hay rotation. Although yield responses were observed with N, P, and K applications, manure application substantially increased yields above yield levels due to applied N, P, and K. Increasing rates of KCl strongly depressed tuber starch contents. Soil test P and K levels increased with repeated fertility applications, and leaf tissue levels were increased with N, P, and K treatments.


2001 ◽  
Vol 28 (1) ◽  
pp. 28-33 ◽  
Author(s):  
J. P. Damicone ◽  
K. E. Jackson

Abstract Two trials with iprodione and three trials with fluazinam were conducted to assess the effects of application method and rate on the control of Sclerotinia blight of peanut with fungicide. In order to concentrate the fungicides near the crown area where the disease causes the most damage, applications were made through a canopy opener with a single nozzle centered over the row to achieve a 30.5-cm-wide band (canopy opener), and through a single nozzle centered over the row to achieve a 46-cm-wide band (band). Broadcast applications were compared to these methods at rates of 0, 0.28, 0.56, and 1.12 kg/ha on the susceptible cultivar Okrun. Sclerotinia blight was severe, with &gt; 70% disease incidence and &lt; 2000 kg/ha yield for the untreated controls in each trial. Linear reductions in area under the disease progress curve (AUDPC), but not final disease incidence, with iprodione rate were significant (P &lt; 0.05) for all methods of application. However, the rate of decrease did not differ among application methods. Linear increases in yield with rate of iprodione were greater for canopy opener compared to the band or broadcast applications. Only a 50% reduction in AUDPC and a maximum yield of &lt; 2700 kg/ha was achieved with iprodione using the best method. At the maximum rate of 1.12 kg/ha, fluazinam provided &gt; 75% disease control and &gt; 4000 kg/ha yield for all application methods. Differences in disease control and yield among application methods only occurred at the 0.28 and 0.56 kg/ha rates of fluazinam. Reductions in AUDPC with fluazinam rate were quadratic for all application methods, but AUDPC values were less for the canopy opener and band methods at 0.28 and 0.56 kg/ha compared to the broadcast methods. The yield response to rate for broadcast applications of fluazinam was linear. However, predicted yield responses to fluazinam rate were quadratic for the band and canopy opener methods and approached the maximum response at 0.84 kg/ha. Targeting fungicide applications using the band and/or canopy opener methods was beneficial for fluazinam at reduced rates. Disease control with iprodione was not adequate regardless of application method.


2008 ◽  
Vol 16 (4) ◽  
pp. 301 ◽  
Author(s):  
R. UUSITALO ◽  
E. TURTOLA ◽  
J. GRÖNROOS

Soil test phosphorus (P) concentration has a major influence on the dissolved P concentration in runoff from agricultural soils. Thus, trends in soil test P partly determine the development of pollution potential of agricultural activities. We reviewed the changes of soil test P and P balances in Finnish agriculture, and assessed the current setting of P loss potential after two Agri-Environmental Programs. Phosphorus balance of the Finnish agriculture has decreased from +35 kg ha–1 of the 1980’s to about +8 kg P ha–1 today. As a consequence, the 50-yr upward trend in soil test P concentrations has probably levelled out in the late 1990’s, as suggested by sampling of about 1600 fields and by a modelling exercise. For the majority of our agricultural soils, soil test P concentrations are currently at a level at which annual P fertilization is unlikely to give measurable yield responses. Soils that benefit from annual P applications are more often found in farms specialized in cereal production, whereas farms specialized in non-cereal plant production and animal production have higher soil test P concentrations. An imbalance in P cycling between plant (feed) and animal production is obvious, and regional imbalances are a result of concentration of animal farms in some parts of the country. A major concern in future will be the fate of manure P in those regions where animal production intensity is further increasing.;


Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 195 ◽  
Author(s):  
Timothy Boring ◽  
Kurt Thelen ◽  
James Board ◽  
Jason De Bruin ◽  
Chad Lee ◽  
...  

To determine if current university fertilizer rate and timing recommendations pose a limitation to high-yield corn (Zea mays subsp. mays) and soybean (Glycine max) production, this study compared annual Phosphorous (P) and Potassium (K) fertilizer applications to biennial fertilizer applications, applied at 1× and 2× recommended rates in corn–soybean rotations located in Minnesota (MN), Iowa (IA), Michigan (MI), Arkansas (AR), and Louisiana (LA). At locations with either soil test P or K in the sub-optimal range, corn grain yield was significantly increased with fertilizer application at five of sixteen site years, while soybean seed yield was significantly increased with fertilizer application at one of sixteen site years. At locations with both soil test P and K at optimal or greater levels, corn grain yield was significantly increased at three of thirteen site years and soybean seed yield significantly increased at one of fourteen site years when fertilizer was applied. Site soil test values were generally inversely related to the likelihood of a yield response from fertilizer application, which is consistent with yield response frequencies outlined in state fertilizer recommendations. Soybean yields were similar regardless if fertilizer was applied in the year of crop production or before the preceding corn crop. Based on the results of this work across the US and various yield potentials, it was confirmed that the practice of applying P and K fertilizers at recommended rates biennially prior to first year corn production in a corn–soybean rotation does not appear to be a yield limiting factor in modern, high management production systems.


Sign in / Sign up

Export Citation Format

Share Document