scholarly journals Effects of time-controlled grazing on runoff and sediment loss

Soil Research ◽  
2009 ◽  
Vol 47 (8) ◽  
pp. 796 ◽  
Author(s):  
Gholamreza Sanjari ◽  
Bofu Yu ◽  
Hossein Ghadiri ◽  
Cyril A. A. Ciesiolka ◽  
Calvin W. Rose

The time-controlled rotational grazing (TC grazing) has become popular in Australia and elsewhere in the world to provide graziers and ranchers with improved productivity over traditional practices. However, this grazing system, which involves short periods of intensive grazing, has raised concerns about sustainability and environmental impacts on water and soil resources, and ecosystem health generally. A runoff experiment at the catchment scale was established on the grazing property ‘Currajong’ in the south-east region of Queensland, Australia, to investigate the effects of continuous and TC grazing on runoff and sediment generation from 2001 to 2006. Sediment loss was reduced significantly under TC grazing compared with continuous grazing irrespective of the size of runoff events. This effect was more pronounced in the catchments with soils of gentler slopes and greater depths. The reduction in soil erosion was achieved despite the fact that the increase in ground cover under TC grazing had little effect on runoff coefficient or runoff depth. Decrease in runoff in relation to the increase in surface cover only occurred for small events, whereas for large rainfall events, runoff generated irrespective of the level of ground cover. This study showed that ground cover is a key driver in reducing sediment concentration, resulting in a significantly lower sediment loss under TC grazing. In the study area a minimum of 70% of surface cover as a threshold appeared to be needed to efficiently protect the soil surface from erosive forces of rain and runoff and to control soil erosion. The results also indicate that TC grazing has a superior capability to produce and maintain a higher level of ground cover (up to 90%) than continuous grazing (up to 65%). The long rest periods in TC grazing are seen as the major contributor to soil and pasture recovery after intensive defoliations by grazing animals, leading to an increase in above-ground organic material and thus surface cover over time.

Soil Research ◽  
1995 ◽  
Vol 33 (5) ◽  
pp. 833 ◽  
Author(s):  
C Carroll ◽  
M Halpin ◽  
K Bell ◽  
J Mollison

Runoff and sediment movement were measured from irrigated furrows of different lengths on a Vertisol in central Queensland. Two farm properties (Denaro's and Roberts') were used to compare a short furrow length (SFL) and a long furrow length (LFL). At Denaro's farm, furrows were 241 and 482 m long, and at Roberts' farm they were 151 and 298 m long, with gradients of 1.0% and 1.3% respectively. Runoff and soil loss were measured from six furrows. At Denaro's farm, soil movement off the farm was measured at a taildrain outlet. Sediment concentration from both rainfall and irrigation declined when cultivation had ceased, soil in the furrows had consolidated and when the cotton canopy provided surface cover. Total soil loss from rainfall and irrigation was approximately 4-5 t ha-1. Rainstorms caused most of the seasonal soil loss, typically 3-4 t ha-1. The critical soil erosion period was between pre-plant irrigation and canopy closure. Soil surface cover, peak runoff rate and furrow length explained 97% of variance in soil loss caused by rainfall. Furrow length was not significant in the soil loss model for irrigation (r2 0.59).


2018 ◽  
Vol 10 (12) ◽  
pp. 4654
Author(s):  
Rafael Blanco Sepúlveda ◽  
Francisco Enríquez Narváez

Agricultural intensification in the mountains of Central America has increased soil vulnerability to erosion by water. This study was undertaken to analyse the erosion that affects the mixed cultivation of maize and beans at two stages of the crop development cycle (at 3 and 6 months after sowing) in southern Guatemala, together with the influence of the ground and crop canopy vegetal cover on soil erosion. The main aim of this analysis is to establish the soil erosion threshold enabling sustainable agriculture. The results obtained show that the soil surface was severely eroded, with mean values of area affected of 88.4% and 73.5% at 3 and 6 months, respectively. In the 3-month plots, the erosion bore scant relation to the factors analysed. Conversely, the area affected by soil erosion in the 6-month plots was significantly related to the degree of ground cover by weeds and litter, and the erosion threshold was located at 80% of vegetal cover. However, plots with this level of cover did not achieve effective erosion control, due to the low level of plant litter cover (15.7%) compared to that of weeds (75.5%). We conclude that this low content of vegetal residue in the soil, together with the tillage practices employed, explains the large surface area affected by erosion and the impossibility of establishing an erosion threshold.


Solid Earth ◽  
2016 ◽  
Vol 7 (5) ◽  
pp. 1293-1302 ◽  
Author(s):  
Abdulvahed Khaledi Darvishan ◽  
Vafa Homayounfar ◽  
Seyed Hamidreza Sadeghi

Abstract. The use of laboratory methods in soil erosion studies, rainfall simulation experiments, Gerlach troughs, and other measurements such as ring infiltrometer has been recently considered more and more because of many advantages in controlling rainfall properties and high accuracy of sampling and measurements. However, different stages of soil removal, transfer, preparation and placement in laboratory plots cause significant changes in soil structure and, subsequently, the results of runoff, sediment concentration and soil loss. Knowing the rate of changes in sediment concentration and soil loss variables with respect to the soil preparation for laboratory studies is therefore inevitable to generalize the laboratory results to field conditions. However, there has been little attention given to evaluate the effects of soil preparation on sediment variables. The present study was therefore conducted to compare sediment concentration and soil loss in natural and prepared soil. To achieve the study purposes, 18 field 1 ×  1 m plots were adopted in an 18 % gradient slope with sandy–clay–loam soil in the Kojour watershed, northern Iran. A portable rainfall simulator was then used to simulate rainfall events using one or two nozzles of BEX: 3/8 S24W for various rainfall intensities with a constant height of 3 m above the soil surface. Three rainfall intensities of 40, 60 and 80 mm h−1 were simulated on both prepared and natural soil treatments with three replications. The sediment concentration and soil loss at five 3 min intervals after time to runoff were then measured. The results showed the significant increasing effects of soil preparation (p ≤ 0.01) on the average sediment concentration and soil loss. The increasing rates of runoff coefficient, sediment concentration and soil loss due to the study soil preparation method for laboratory soil erosion plots were 179, 183 and 1050 % (2.79, 2.83 and 11.50 times), respectively.


Soil Research ◽  
1986 ◽  
Vol 24 (2) ◽  
pp. 135 ◽  
Author(s):  
DM Freebairn ◽  
GH Wockner

Effects of soil surface conditions on runoff and soil loss were studied on two major cracking clay soils of the Darling Downs, Queensland. Techniques used to measure soil loss between field contour bays under natural rainfall are described, and the results from 10 contour bay catchments (66 plot years) are presented. Soil movement was separated into rill, interrill, suspended sediment and channel deposition. Two slope lengths were considered (60 and 35 m), and interrill erosion appeared to be the major source of soil loss. Runoff and sediment concentration were both inversely related to surface cover and total soil movement was greatly reduced by surface cover. In an annual winter-wheat, summer-fallow system, removal of stubble resulted in soil movement of 29-62 t ha-1 year-1. Retention of stubble (stubble mulching) reduced soil movement to less than 5 t ha-1 year-1. Greater than 75% of the variance in soil movement from single events was explained by surface cover and peak runoff rate. Surface cover is a measure of the surface area protected from soil detachment and entrainment. Peak runoff rate describes the amount of energy or stream power available for detachment and entrainment.


2014 ◽  
Vol 1 (1) ◽  
pp. 981-1012 ◽  
Author(s):  
L. M. Thomsen ◽  
J. E. M. Baartman ◽  
R. J. Barneveld ◽  
T. Starkloff ◽  
J. Stolte

Abstract. Quantification of soil roughness, i.e. the irregularities of the soil surface due to soil texture, aggregates, rock fragments and land management, is important as it affects surface storage, infiltration, overland flow and ultimately sediment detachment and erosion. Roughness has been measured in the field using both contact methods, such as roller chain and pinboard, and sensor methods, such as stereophotogrammetry and terrestrial laser scanning (TLS). A novel depth sensing technique, originating in the gaming industry, has recently become available for earth sciences; the Xtion Pro method. Roughness data obtained using various methods are assumed to be similar; this assumption is tested in this study by comparing five different methods to measure roughness in the field on 1 m2 agricultural plots with different management (ploughing, harrowing, forest and direct seeding on stubble) in southern Norway. Subsequently, the values were used as input for the LISEM soil erosion model to test their effect on the simulated hydrograph on catchment scale. Results show that statistically significant differences between the methods were obtained only for the fields with direct drilling on stubble; for the other land management types the methods were in agreement. The spatial resolution of the contact methods was much lower than for the sensor methods (10 000 versus at least 57 000 points per m2 respectively). In terms of costs and ease of handling in the field, the Xtion Pro method is promising. Results from the LISEM model indicate that especially the roller chain underestimated the RR values and the model thereby calculated less surface runoff than measured. In conclusion: the choice of measurement method for roughness data matters and depends on the required accuracy, resolution, mobility in the field and available budget. It is recommended to use only one method within one study.


Soil Research ◽  
2007 ◽  
Vol 45 (4) ◽  
pp. 266 ◽  
Author(s):  
Henintsoa Andry ◽  
Tahei Yamamoto ◽  
Mitsuhiro Inoue

There are over 350 different species of sedum (Sedum spp.) and most of them can tolerate harsh conditions including very cold to hot temperatures, drought, and poor and stony soil. Sedum plants are used in rock gardens and edging flower beds, and for greening the tops of buildings, cottages, and thatched roofs. However, little is known about the effectiveness of sedum as vegetation cover in protecting soil erosion from a road embankment made of acid soil. Acid soil is believed to be vulnerable to soil erosion and is not suitable for plant growth. Liming treatment is required first before revegetation to alleviate the soil acidity; however, lime incorporation may affect the soil physical properties and, consequently, runoff and sediment generation. A rainfall simulation study was conducted to test the effectiveness of hydrated lime and artificial zeolite as amendments and Sedum sediforme (Rupestria group) as vegetation cover in controlling soil erosion from an acid soil taken from mountain cuts in Yamaguchi prefecture, Japan, where it is used for road embankment. The soil was treated with 0.5% lime and 10% zeolite. Two rainfall intensities of 30 and 60 mm/h were tested for 2 and 1 h, respectively, on sedum-growing soil plots measuring 0.50 by 0.30 by 0.05 m. Three levels of vegetation cover (bare soil, 25%, 75%) of sedum plant of 5-month growth under 2-day irrigation intervals were tested. The incorporation of hydrated lime and artificial zeolite amendments improved wet aggregate stability, which contributed to significant decrease in surface runoff, sediment concentration, and total soil loss by rain splash from the bare soil. Zeolite was more effective in promoting plant growth than the lime treatment; as a result the decrease in sediment generation and soil loss by rain splash, compared with the control, was larger with zeolite than with lime. Under both intensities of simulated rain, the sediment concentration and total soil loss by rain splash decreased significantly (P < 0.05) with increasing surface cover. The correlation between cumulative soil loss (CSL) and cumulative surface runoff was linear and significant (P < 0.001) and the slope coefficient decreased with increasing surface cover. This suggests that the sediment carrying capacity or the erosivity of the surface runoff was constant and it decreased with increasing surface cover. The sedum cover reduced the CSL up to 72 and 79% under 30 and 60 mm/h rainfall intensities, respectively. The mean weight diameter of the soil sediment transported by runoff and soil loss by rain splash were significantly increased, and therefore, the silt and clay proportion of the crust material formed on the soil surface decreased up to 6 and 16% under 25 and 75% vegetation cover, respectively. These results demonstrate that hydrated lime and artificial zeolite could be used as amendments and sedum plant as vegetation covers in controlling soil erosion from an acid soil.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 974
Author(s):  
Rafael Blanco-Sepúlveda ◽  
Amilcar Aguilar-Carrillo ◽  
Francisco Lima

In conservation agriculture, the no-tillage cultivation system and the retention of permanent vegetal cover are crucial to the control of soil erosion by water. This paper analyses the cultivation of maize under no-tillage, with particular reference to the effect produced on soil erosion when weed control is performed by a hand tool (machete), which disturbs the surface of the soil, and to the behavior of the soil cover in these circumstances. The study area is located in the humid tropical mountains of northern Nicaragua (Peñas Blancas Massif Nature Reserve). The results obtained show that 59.2% of the soil surface was affected by appreciable levels of sheet and splash erosion, although the vegetal cover of the soil was relatively high (with average weed and litter cover of 33.9% and 33.8%, respectively). The use of machetes for weed control provoked considerable soil disturbance, which explained the high rates of erosion observed. Moreover, this form of soil management disturbs the litter layer, making it less effective in preventing erosion. The litter remains loose on the soil surface, and so an increase in soil cover does not achieve a proportionate reduction in the area affected by erosion; thus, even with 80–100% weed and litter cover, 42% of the cultivated area continued to present soil erosion.


2021 ◽  
Author(s):  
Ivan Dugan ◽  
Leon Josip Telak ◽  
Iva Hrelja ◽  
Ivica Kisić ◽  
Igor Bogunović

&lt;p&gt;&lt;strong&gt;Straw mulch impact on soil properties and initial soil erosion processes in the maize field&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Ivan Dugan*, Leon Josip Telak, Iva Hrelja, Ivica Kisic, Igor Bogunovic&lt;/p&gt;&lt;p&gt;University of Zagreb, Faculty of Agriculture, Department of General Agronomy, Zagreb, Croatia&lt;/p&gt;&lt;p&gt;(*correspondence to Ivan Dugan: [email protected])&lt;/p&gt;&lt;p&gt;Soil erosion by water is the most important cause of land degradation. Previous studies reveal high soil loss in conventionally managed croplands, with recorded soil losses high as 30 t ha&lt;sup&gt;-1&lt;/sup&gt; under wide row cover crop like maize (Kisic et al., 2017; Bogunovic et al., 2018). Therefore, it is necessary to test environmentally-friendly soil conservation practices to mitigate soil erosion. This research aims to define the impacts of mulch and bare soil on soil water erosion in the maize (Zea mays&amp;#160;L.) field in Blagorodovac, Croatia (45&amp;#176;33&amp;#8217;N; 17&amp;#176;01&amp;#8217;E; 132 m a.s.l.). For this research, two treatments on conventionally tilled silty clay loam Stagnosols were established, one was straw mulch (2 t ha&lt;sup&gt;-1&lt;/sup&gt;), while other was bare soil. For purpose of research, ten rainfall simulations and ten sampling points were conducted per each treatment. Simulations were carried out with a rainfall simulator, simulating a rainfall at an intensity of 58 mm h&lt;sup&gt;-1&lt;/sup&gt;, for 30 min, over 0.785 m&lt;sup&gt;2&lt;/sup&gt; plots, to determine runoff and sediment loss. Soil core samples and undisturbed samples were taken in the close vicinity of each plot. The results showed that straw mulch mitigated water runoff (by 192%), sediment loss (by 288%), and sediment concentration (by 560%) in addition to bare treatment. The bare treatment showed a 55% lower infiltration rate. Ponding time was higher (p &lt; 0.05) on mulched plots (102 sec), compared to bare (35 sec), despite the fact that bulk density, water-stable aggregates, water holding capacity, and mean weight diameter did not show any difference (p &gt; 0.05) between treatments. The study results indicate that straw mulch mitigates soil water erosion, because it immediately reduces runoff, and enhances infiltration. On the other side, soil water erosion on bare soil under simulated rainstorms could be high as 5.07 t ha&lt;sup&gt;-1&lt;/sup&gt;, when extrapolated, reached as high as 5.07 t ha&lt;sup&gt;-1 &lt;/sup&gt;in this study. The conventional tillage, without residue cover, was proven as unsustainable agro-technical practice in the study area.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Key words: straw mulch, &lt;/strong&gt;rainfall simulation, soil water erosion&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgment&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;This work was supported by Croatian Science Foundation through the project &quot;Soil erosion and degradation in Croatia&quot; (UIP-2017-05-7834) (SEDCRO).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Literature&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., Sraka, M. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena, 160, 376-384.&lt;/p&gt;&lt;p&gt;Kisic, I., Bogunovic, I., Birk&amp;#225;s, M., Jurisic, A., Spalevic, V. (2017). The role of tillage and crops on a soil loss of an arable Stagnic Luvisol. Archives of Agronomy and Soil Science, 63(3), 403-413.&lt;/p&gt;


2013 ◽  
Vol 17 (3) ◽  
pp. 1051-1063 ◽  
Author(s):  
S. A. Tilahun ◽  
C. D. Guzman ◽  
A. D. Zegeye ◽  
T. A. Engda ◽  
A. S. Collick ◽  
...  

Abstract. Erosion modeling has been generally scaling up from plot scale but not based on landscape topographic position, which is a main variable in saturation excess runoff. In addition, predicting sediment loss in Africa has been hampered by using models developed in western countries and do not perform as well in the monsoon climate prevailing in most of the continent. The objective of this paper is to develop a simple erosion model that can be used in the Ethiopian Highlands in Africa. We base our sediment prediction on a simple distributed saturated excess hydrology model that predicts surface runoff from severely degraded lands and from bottom lands that become saturated during the rainy season and estimates interflow and baseflow from the remaining portions of the landscape. By developing an equation that relates surface runoff to sediment concentration generated from runoff source areas, assuming that baseflow and interflow are sediment-free, we were able to predict daily sediment concentrations from the Anjeni watershed with a Nash–Sutcliffe efficiency ranging from 0.64 to 0.78 using only two calibrated sediment parameters. Anjeni is a 113 ha watershed in the 17.4 million ha Blue Nile Basin in the Ethiopian Highlands. The discharge of the two watersheds was predicted with Nash–Sutcliffe efficiency values ranging from 0.80 to 0.93. The calibrated values in Anjeni for degraded (14%) and saturated (2%) runoff source area were in agreement with field evidence. The analysis suggests that identifying the runoff source areas and predicting the surface runoff correctly is an important step in predicting the sediment concentration.


2014 ◽  
Vol 11 (18) ◽  
pp. 5235-5244 ◽  
Author(s):  
A. Chappell ◽  
N. P. Webb ◽  
R. A. Viscarra Rossel ◽  
E. Bui

Abstract. The debate remains unresolved about soil erosion substantially offsetting fossil fuel emissions and acting as an important source or sink of CO2. There is little historical land use and management context to this debate, which is central to Australia's recent past of European settlement, agricultural expansion and agriculturally-induced soil erosion. We use "catchment" scale (∼25 km2) estimates of 137Cs-derived net (1950s–1990) soil redistribution of all processes (wind, water and tillage) to calculate the net soil organic carbon (SOC) redistribution across Australia. We approximate the selective removal of SOC at net eroding locations and SOC enrichment of transported sediment and net depositional locations. We map net (1950s–1990) SOC redistribution across Australia and estimate erosion by all processes to be ∼4 Tg SOC yr−1, which represents a loss of ∼2% of the total carbon stock (0–10 cm) of Australia. Assuming this net SOC loss is mineralised, the flux (∼15 Tg CO2-equivalents yr−1) represents an omitted 12% of CO2-equivalent emissions from all carbon pools in Australia. Although a small source of uncertainty in the Australian carbon budget, the mass flux interacts with energy and water fluxes, and its omission from land surface models likely creates more uncertainty than has been previously recognised.


Sign in / Sign up

Export Citation Format

Share Document