scholarly journals The impact of standard preparation practice on the runoff and soil erosion rates under laboratory conditions

Solid Earth ◽  
2016 ◽  
Vol 7 (5) ◽  
pp. 1293-1302 ◽  
Author(s):  
Abdulvahed Khaledi Darvishan ◽  
Vafa Homayounfar ◽  
Seyed Hamidreza Sadeghi

Abstract. The use of laboratory methods in soil erosion studies, rainfall simulation experiments, Gerlach troughs, and other measurements such as ring infiltrometer has been recently considered more and more because of many advantages in controlling rainfall properties and high accuracy of sampling and measurements. However, different stages of soil removal, transfer, preparation and placement in laboratory plots cause significant changes in soil structure and, subsequently, the results of runoff, sediment concentration and soil loss. Knowing the rate of changes in sediment concentration and soil loss variables with respect to the soil preparation for laboratory studies is therefore inevitable to generalize the laboratory results to field conditions. However, there has been little attention given to evaluate the effects of soil preparation on sediment variables. The present study was therefore conducted to compare sediment concentration and soil loss in natural and prepared soil. To achieve the study purposes, 18 field 1 ×  1 m plots were adopted in an 18 % gradient slope with sandy–clay–loam soil in the Kojour watershed, northern Iran. A portable rainfall simulator was then used to simulate rainfall events using one or two nozzles of BEX: 3/8 S24W for various rainfall intensities with a constant height of 3 m above the soil surface. Three rainfall intensities of 40, 60 and 80 mm h−1 were simulated on both prepared and natural soil treatments with three replications. The sediment concentration and soil loss at five 3 min intervals after time to runoff were then measured. The results showed the significant increasing effects of soil preparation (p ≤ 0.01) on the average sediment concentration and soil loss. The increasing rates of runoff coefficient, sediment concentration and soil loss due to the study soil preparation method for laboratory soil erosion plots were 179, 183 and 1050 % (2.79, 2.83 and 11.50 times), respectively.

2015 ◽  
Vol 7 (1) ◽  
pp. 885-907 ◽  
Author(s):  
A. Khaledi Darvishan ◽  
V. Homayounfar ◽  
S. H. R. Sadeghi

Abstract. The use of laboratory methods in soil erosion studies causes soil disturbance, preparation and placement in experimental plots and has been recently considered more and more because of many advantages. However, different stages of soil removal, transfer, preparation and placement in laboratory plots cause significant changes in soil structure and subsequently, the results of runoff, sediment concentration and soil loss. Knowing the rate of changes in sediment concentration and soil loss variables with respect to the soil preparation for laboratory studies is therefore inevitable to generalize the laboratory results to field conditions. However, there has been less attention to evaluate the effects of soil preparation on sediment variables. The present study was therefore conducted to compare sediment concentration and soil loss in natural and prepared soil. To achieve the study purposes, 18 field 1 m × 1 m-plots were adopted in an 18% gradient slope with sandy-clay-loam soil in the Kojour watershed, Northern Iran. Three rainfall intensities of 40, 60 and 80 mm h−1 were simulated on both prepared and natural soil treatments with three replications. The sediment concentration and soil loss at five three-minute intervals after time-to-runoff were then measured. The results showed the significant (p ≤ 0.01) increasing effects of soil preparation on the average sediment concentration and soil loss. The increasing rates of runoff coefficient, sediment concentration and soil loss due to the study soil preparation method for laboratory soil erosion plots, were 179, 183 and 1050% (2.79, 2.83 and 11.50 times), respectively.


2018 ◽  
Vol 46 (2) ◽  
pp. 553-562 ◽  
Author(s):  
Ataollah KAVIAN ◽  
Leila GHOLAMI ◽  
Maziar MOHAMMADI ◽  
Velibor SPALEVIC ◽  
Moghadeseh FALAH SORAKI

Soil erosion is one of the key challenges in soil and water conservation. Vegetation that covers soil and organic and inorganic mulch is very useful for the control of erosion processes. This study examined treatment with wheat residual (as agriculture mulch) on infiltration, time to runoff, runoff coefficient, sediment concentration and soil erosion processes. The study has been conducted for sandy-loam soil taken from summer rangeland (Northern Iran) with simulated rainfall intensities of 50 and 100 mm h-1. The experiment was conducted in slopes of 30% in three replications with two amounts of wheat residual of 50 and 90 %. The results showed that conservation percent of soil erosion for wheat residual 50 and 90% was 61.68 and 73.25%, respectively (in rainfall intensity of 50 mm h-1). Also, the conservation percent of soil erosion for wheat residual of 50 and 90% cover was 70.68 and 90.55, respectively (in rainfall intensity of 100 mm h-1). It was concluded that the conservation treatments could reduce runoff coefficient, sediment concentration and soil erosion and increase the time to runoff and infiltration coefficient. This effect was significant on time for infiltration, sediment concentration and soil erosion variables (R2=0.99), time to runoff and runoff coefficient variables (R2=0.95). The interaction effects of rainfall intensity and soil conservation was significant for sediment concentration and soil erosion variables (R2=0.99).


2020 ◽  
Author(s):  
Nicolás Riveras ◽  
Kristina Witzgall ◽  
Victoria Rodríguez ◽  
Peter Kühn ◽  
Carsten W. Mueller ◽  
...  

<p>Soil erosion is one of the main problems in soil degradation nowadays and is widely distributed in many landscapes worldwide. Particularly water erosion is widespread and determined by rain erosivity, soil erodibility, topographic factors and the management carried out to mitigate this phenomenon. Although this process is mostly known as a consequence of human management such as agriculture or forestry, it is a process that also occurs naturally, being one of the factors that regulate the shape of the landscape.</p><p>One of the main agents that stabilize the soil surface is biota and its activity, either in the form of plants, microorganisms or as an assemblage in the form of a biological soil crust (biocrusts). However, there are limited studies about how and what extent biota drives soil-stabilizing processes. With particular view on the impact of biocrusts on soil erosion, most studies have been carried out in arid and semi-arid regions, so its influence under other climates is largely unknown.</p><p>This study focuses on the influence of biota on soil erosion in a temperature and rainfall gradient, covering four climate zones (arid, semi-arid, mediterranean and humid) with very limited human intervention. Other variables such as the origin of the geological formation, geographical longitude and glacial influence were kept constant for all study sites. The effect of vegetation (biocrusts) and its abundance, microbiology and terrain parameters are investigated using rainfall simulation experiments under controlled conditions and by a physico-chemical evaluation of the soil, surface runoff, percolation and sediment discharge, in order to determine the different environmental filtering effects that the soil develops under different climatic conditions.</p><p>It is expected that as vegetation vigor and cover increase, soil erodibility will decrease. The biocrust is the protagonist of this stabilization in conditions of low pedological development and will become secondary as edaphoclimatic conditions favor the colonization of plants.</p><p>The results of this study will help to achieve a better understanding of the role of biota in soil erosion control and will clarify its influence on soil losses under different climate and slope conditions. Analyses are currently ongoing and first results of our work will be presented at the EGU 2020.</p>


2014 ◽  
Vol 22 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Leila Gholami ◽  
Kazimierz Banasik ◽  
Seyed Hamidreza Sadeghi ◽  
Abdulvahed Khaledi Darvishan ◽  
Leszek Hejduk

Abstract Mulches have extraordinary potential in reducing surface runoff, increasing infiltration of water into the soil and decreasing soil erosion. The straw mulches as a biological material, has the ability to be a significant physical barrier against the impact of raindrops and reduce the detachment of soil aggregates. The present study is an attempt to determine the efficiency of straw mulch as conservation treatment in changes in the splash erosion, time-to-runoff, runoff coefficient, infiltration coefficient, time-to-drainage, drainage coefficient, sediment concentration and soil loss. The laboratory experiments have been conducted for sandy-loam soil taken from deforested area, about 15 km of Warsaw west, Poland under lab conditions with simulated rainfall intensities of 60 and 120 mmh–1, in 4 soil moistures of 12, 25, 33 and 40% and the slope of 9%. Compared with bare treatments, results of straw mulch application showed the significant conservation effects on splash erosion, runoff coefficient, sediment concentration and soil loss and significant enhancement effects on infiltration and drainage. The results of Spearman-Rho correlation showed the significant (p < 0.05) correlation with r = –0.873, 0.873, 0.878 and 0.764 between rainfall intensity and drainage coefficient, downstream splash, sediment concentration and soil loss and with r = –0.976, 0.927 and –0.927 between initial soil moisture content and time-to-runoff, runoff coefficient and infiltration coefficient, respectively.


2015 ◽  
Vol 7 (1) ◽  
pp. 63-89 ◽  
Author(s):  
S. H. R. Sadeghi ◽  
L. Gholami ◽  
M. Homaee ◽  
A. Khaledi Darvishan

Abstract. Although various organic and inorganic mulches are used for soil conservation purposes, the comparative effectiveness of them on soil characteristics has not been comprehensively considered from different aspects. The present study is therefore an attempt to determine the efficiency of straw mulch, manure and TA-200 polyacrylamide with respective rates of 500, 300 and 50 g m-2, respectively, in changing sediment concentration and soil loss. The experiments were conducted for sandy-loam soil (collected from the top 0–20 cm-layer) taken from a summer rangeland, the Alborz Mountains, Northern Iran under laboratory conditions with simulated rainfall intensities of 30, 50, 70 and 90 mm h-1 and the slope of 30%. The results showed that the straw mulch decreased soil concentration at rate of 45.60% compared to the control plots, and performed better than manure (8.98% reduction) and PAM (4.74% reduction). The results showed that the maximum reduction in sediment concentration and soil loss for all soil amendments occurred in the rainfall intensity of 90 mm h-1 with the rates of 58.69 and 63.24%, for straw mulch, 14.65 and 13.14%, for manure and 20.15 and 23.44% for TA-200, respectively.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2856
Author(s):  
Judit Alexandra Szabó ◽  
Csaba Centeri ◽  
Boglárka Keller ◽  
István Gábor Hatvani ◽  
Zoltán Szalai ◽  
...  

Soil erosion is a complex, destructive process that endangers food security in many parts of the world; thus, its investigation is a key issue. While the measurement of interrill erosion is a necessity, the methods used to carry it out vary greatly, and the comparison of the results is often difficult. The present study aimed to examine the results of two rainfall simulators, testing their sensitivity to different environmental conditions. Plot-scale nozzle type rainfall simulation experiments were conducted on the same regosol under both field and laboratory conditions to compare the dominant driving factors of runoff and soil loss. In the course of the experiments, high-intensity rainfall, various slope gradients, and different soil surface states (moisture content, roughness, and crust state) were chosen as the response parameters, and their driving factors were sought. In terms of the overall erosion process, the runoff, and soil loss properties, we found an agreement between the simulators. However, in the field (a 6 m2 plot), the sediment concentration was related to the soil conditions and therefore its hydrological properties, whereas in the laboratory (a 0.5 m2 plot), slope steepness and rainfall intensity were the main driving factors. This, in turn, indicates that the design of a rainfall simulator may affect the results of the research it is intended for, even if the differences occasioned by various designs may be of a low order.


Soil Research ◽  
1995 ◽  
Vol 33 (5) ◽  
pp. 833 ◽  
Author(s):  
C Carroll ◽  
M Halpin ◽  
K Bell ◽  
J Mollison

Runoff and sediment movement were measured from irrigated furrows of different lengths on a Vertisol in central Queensland. Two farm properties (Denaro's and Roberts') were used to compare a short furrow length (SFL) and a long furrow length (LFL). At Denaro's farm, furrows were 241 and 482 m long, and at Roberts' farm they were 151 and 298 m long, with gradients of 1.0% and 1.3% respectively. Runoff and soil loss were measured from six furrows. At Denaro's farm, soil movement off the farm was measured at a taildrain outlet. Sediment concentration from both rainfall and irrigation declined when cultivation had ceased, soil in the furrows had consolidated and when the cotton canopy provided surface cover. Total soil loss from rainfall and irrigation was approximately 4-5 t ha-1. Rainstorms caused most of the seasonal soil loss, typically 3-4 t ha-1. The critical soil erosion period was between pre-plant irrigation and canopy closure. Soil surface cover, peak runoff rate and furrow length explained 97% of variance in soil loss caused by rainfall. Furrow length was not significant in the soil loss model for irrigation (r2 0.59).


Solid Earth ◽  
2015 ◽  
Vol 6 (2) ◽  
pp. 445-455 ◽  
Author(s):  
S. H. R. Sadeghi ◽  
L. Gholami ◽  
M. Homaee ◽  
A. Khaledi Darvishan

Abstract. Various organic and inorganic mulches are used for soil conservation purposes, the effectiveness of which on soil characteristics has not been comprehensively considered from different aspects. The present study surveys the efficiency of straw mulch, manure and TA-200 polyacrylamide with respective rates of 500, 300 and 50 g m−2 in changing sediment concentration and soil loss. The experiments were conducted for sandy-loam soil taken from a summer rangeland, the Alborz Mountains, northern Iran. The experiments were performed under laboratory conditions with simulated rainfall intensities of 30, 50, 70 and 90 mm h−1 and a slope of 30%. The results showed that the straw mulch decreased soil erosion at rate of 45.60% compared to the control plots and performed better than manure (8.98% reduction) and PAM (4.74% reduction). The results showed that the maximum reduction in sediment concentration and soil loss for all soil amendments occurred at the rainfall intensity of 90 mm h−1 with the rates of 58.69 and 63.24% for straw mulch, 14.65 and 13.14% for manure and 20.15 and 23.44% for TA-200.


Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 71
Author(s):  
Artemi Cerdà ◽  
Xavier Úbeda ◽  
Gaspar Mora-Navarro ◽  
Enric Terol ◽  
Antonio Giménez-Morera

Ash cover the forest fire affected soil for some weeks or months and act as a key factor to determine the soil and water losses. Ash depth is researched here to determine how affect the soil detachment and the runoff generation. Seventy rainfall simulation experiments on paired 0.50 m2 plots (five plots with 0, 1, 2, 3, 5, 10, 15- and 30-mm ash depth), and repeated one week later) under thunderstorms of 48 mmh-1 for one hour were carried out under laboratory conditions. In the first experiment, after the bed of ash was applied, the results show that ash depth determines the runoff rates as they reduce the discharge from 23.1% to 13.9%. The sediment concentration increased from 23.8 till 38.3 g L−1, and the total soil erosion from 22.9 till 27.6 Mg ha−1 y−1. In the second experiment after the bed of ash was applied, the results show that runoff discharge was higher and moved from 43.2% till 55.33%. The sediment concentration increased from 13.8 till 18.9 g L−1 and the total soil erosion slightly increased from 33.9 till 47.6 Mg ha−1 y−1. This research confirms that the fresh ash beds contribute to reduce the runoff losses and as deeper is the ash bed lower is the runoff discharge. However, the ash bed also acts as a source of sediments and as deep is the ash bed the runoff sediment concentration is higher. The soil erosion increased with the depth of the ash bed. After the simulated thunderstorms, the soils shown a reduction in their capacity to hold water due to the crust formation and runoff was enhanced. Sediment concentration is reduced due to the ash compaction and the final soil erosion rates increased as a consequence of the larger runoff discharge. This research demonstrates the highly dynamic response of the ash after the fire due to the wetting and drying processes after the thunderstorms.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2015
Author(s):  
Iwona Jaskulska ◽  
Kestutis Romaneckas ◽  
Dariusz Jaskulski ◽  
Piotr Wojewódzki

Conservation agriculture has three main pillars, i.e., minimum tillage, permanent soil cover, and crop rotation. Covering the soil surface with plant residues and minimum mechanical soil disturbance can all result from introducing a strip-till one-pass (ST-OP) system. The aim of this study was to determine the impact of the ST-OP technology on the management of plant residues, soil properties, inputs, and emissions related to crop cultivation. We compared the effect of a ST-OP system against conventional tillage (CT) using a plough, and against reduced, non-ploughing tillage (RT). Four field experiments were conducted for evaluating the covering of soil with plant residues of the previous crop, soil loss on a slope exposed to surface soil runoff, soil structure and aggregate stability, occurrence of soil organisms and glomalin content, soil moisture and soil water reserve during plant sowing, labour and fuel inputs, and CO2 emissions. After sowing plants using ST-OP, 62.7–82.0% of plant residues remained on the soil surface, depending on the previous crop and row spacing. As compared with CT, the ST-OP system increased the stability of soil aggregates of 0.25–2.0 mm diameter by 12.7%, glomalin content by 0.08 g·kg−1, weight of earthworms five-fold, bacteria and fungi counts, and moisture content in the soil; meanwhile, it decreased soil loss by 2.57–6.36 t·ha−1 year−1, labour input by 114–152 min·ha−1, fuel consumption by 35.9–45.8 l·ha−1, and CO2 emissions by 98.7–125.9 kg·ha−1. Significant favourable changes, as compared with reduced tillage (RT), were also found with respect to the stability index of aggregates of 2.0–10.0 mm diameter, the number and weight of earthworms, as well as bacteria and fungi counts.


Sign in / Sign up

Export Citation Format

Share Document