Processes and magnitude of CO2, CH4, and N2O fluxes from liming of Australian acidic soils: a review

Soil Research ◽  
2009 ◽  
Vol 47 (8) ◽  
pp. 747 ◽  
Author(s):  
K. L. Page ◽  
D. E. Allen ◽  
R. C. Dalal ◽  
W. Slattery

Increases in soil acidification have led to large increases in the application of aglime to Australian agricultural soils. The addition of aglime has the potential to increase greenhouse gas (GHG) emissions due to the release of CO2 during the chemical dissolution of aglime and due to pH-induced changes to soil biological processes. Currently, Australia’s GHG accounting system assumes that all the carbon contained in aglime is released to the atmosphere during dissolution in accordance with the Tier 1 methodology of the IPCC. However, a recent approach by TO West and AC McBride has questioned this assumption, hypothesising that a proportion of the carbon from riverine-transported aglime may be sequestered in seawater. In addition, there is presently no capacity within Australia’s carbon accounting system to quantify changes to GHG emissions from lime-induced changes to soil biological processes. Therefore, the primary objective of this review was to examine the chemical and biological processes occurring during the application of aglime and the subsequent fluxes in CO2, N2O, and CH4 from soil, with particular reference to the Australian environment. Estimates for CO2 emissions from aglime application in Australia using the contrasting methodologies of the IPCC and West and McBride were compared. Using the methodology of the IPCC it was determined that from the aglime applied in Australia in 2002, 0.995 Tg of CO2 would have been emitted, whereas this figure was reduced to 0.659–0.860 Tg of CO2 using the methodology of West and McBride. However, the accuracy of these estimates is currently limited by poor understanding of the manner in which aglime moves within the Australian landscapes. In addition, there are only a very small number of Australian studies that have examined the effect of aglime on GHG emissions due to changes in soil biological processes, limiting the ability of Australian modellers to accurately incorporate these processes within the carbon accounting system.

Soil Research ◽  
2011 ◽  
Vol 49 (5) ◽  
pp. 377 ◽  
Author(s):  
K. L. Page ◽  
R. C. Dalal

Greenhouse gas (GHG) flux from wetland systems, both in their natural state and following drainage, has not been well accounted for in the carbon accounting process. We review GHG production from both natural and drained wetlands, and estimate the likely GHG emissions from these systems in Australia. Only a small number of studies have quantified GHG emissions from undisturbed Australian wetland environments. Consequently, in order to estimate GHG flux for Australia, it was necessary to collate data collected overseas from similar climatic zones. Using this approach, it appears that undisturbed, vegetated wetlands in Australia are likely to be net GHG sinks, with the greatest rates of sequestration occurring in mangrove ecosystems (–2669 g CO2-e/m2.year) where biomass production is high but CH4 emissions are limited by salinity. The uncertainty surrounding these values is high, however, due to (a) the low number of measurements from Australia, (b) the low number of measurements for CO2 flux, and (c) the low number of studies where all GHGs have been measured concurrently. It was estimated that the drainage of melaleuca and mangrove forest wetlands in Australia would turn them from carbon sinks into carbon sources, and that in the first 50 years since drainage, this has increased global warming potential by 1149 Tg CO2-e or 23 Tg CO2-e/year. This is significant given that GHG emissions due to land-use change in 2007 totalled 77.1 Tg CO2-e. However, data surrounding the area of wetlands drained, carbon stocks in drained wetlands, and the effect of drainage on CH4 and N2O flux are limited, making the uncertainty surrounding these estimates high. Further study is clearly required if Australia wishes to accurately incorporate wetland systems into national carbon and greenhouse gas accounting budgets.


Soil Research ◽  
2009 ◽  
Vol 47 (5) ◽  
pp. 443 ◽  
Author(s):  
D. E. Allen ◽  
D. S. Mendham ◽  
Bhupinderpal-Singh ◽  
A. Cowie ◽  
W. Wang ◽  
...  

Land use change from agriculture to forestry offers potential opportunities for carbon (C) sequestration and thus partial mitigation of increasing levels of carbon dioxide (CO2) in the atmosphere. The effects of land use change of grazed pastures on in situ fluxes of nitrous oxide (N2O) and methane (CH4) from soil were examined across 3 forest types in Australian temperate, Mediterranean, and subtropical regions, using a network of paired pasture−forest sites, representing 3 key stages of forest stand development: establishment, canopy-closure, and mid to late rotation. During the 12-month study, soil temperature ranged from –6° to 40°C and total rainfall from 487 to 676 mm. Rates of N2O flux ranged between 1 and 100 μg/m2.h in pasture soils and from –5 to 50 μg/m2.h in forest soils; magnitudes were generally similar across the 3 climate zones. Rates of CH4 flux varied from –1 to –50 μg/m2.h in forest soil and from +10 to –30 μg/m2.h in pasture soils; CH4 flux was highest at the subtropics sites and lowest at the Mediterranean sites. In general, N2O emissions were lower, and CH4 consumption was higher, under forest than pasture soils, suggesting that land use change from pasture to forest can have a positive effect on mitigation of non-CO2 greenhouse gas (GHG) emissions from soil as stands become established. The information derived from this study can be used to improve the capacity of models for GHG accounting (e.g. FullCAM, which underpins Australia’s National Carbon Accounting System) to estimate N2O and CH4 fluxes resulting from land use change from pasture to forest in Australia. There is still, however, a need to test model outputs against continuous N2O and CH4 measurements over extended periods of time and across a range of sites with similar land use, to increase confidence in spatial and temporal estimates at regional levels.


Author(s):  
Tze San Ong ◽  
Nur Fatin Binti Kasbun ◽  
Boon Heng Teh ◽  
Haslinah Muhammad ◽  
Sohail Ahmad Javeed

2021 ◽  
Author(s):  
Saara Lind ◽  
Marja Maljanen ◽  
Merja Myllys ◽  
Mari Räty ◽  
Sanna Kykkänen ◽  
...  

<p>Agricultural soils are a significant source of greenhouse gas (GHG) emissions. To study these emissions, we are currently building three research platforms that consist of full eddy covariance instrumentation for determination of net ecosystem carbon dioxide exchange and fluxes of methane and nitrous oxide. These platforms will be completed with supporting weather, plant and soil data collection. Two of our platforms are sites on organic soils with a thick peat layer (>60 cm) and the third one is on a mineral soil (silt loam). To study the role of the grassland management practises at these sites, we have initiated ORMINURMI-project. Here, we will characterise the effects of ground water table (high vs. low), crop renewal methods (autumn vs. summer) and plant species (tall fescue vs. red glover grass) on greenhouse gas budgets of grass production. Also effect on yield amount and nutrient quality will be determined. In this presentation, we will present the preliminary data collected at these research platforms and our plans for the use of these data in the coming years.</p>


2016 ◽  
Vol 13 (1) ◽  
pp. 95-113 ◽  
Author(s):  
S. Sabbatini ◽  
N. Arriga ◽  
T. Bertolini ◽  
S. Castaldi ◽  
T. Chiti ◽  
...  

Abstract. The production of bioenergy in Europe is one of the strategies conceived to reduce greenhouse gas (GHG) emissions. The suitability of the land use change from a cropland (REF site) to a short-rotation coppice plantation of hybrid poplar (SRC site) was investigated by comparing the GHG budgets of these two systems over 24 months in Viterbo, Italy. This period corresponded to a single rotation of the SRC site. The REF site was a crop rotation between grassland and winter wheat, i.e. the same management of the SRC site before the conversion to short-rotation coppice. Eddy covariance measurements were carried out to quantify the net ecosystem exchange of CO2 (FCO2), whereas chambers were used to measure N2O and CH4 emissions from soil. The measurements began 2 years after the conversion of arable land to SRC so that an older poplar plantation was used to estimate the soil organic carbon (SOC) loss due to SRC establishment and to estimate SOC recovery over time. Emissions from tractors and from production and transport of agricultural inputs (FMAN) were modelled. A GHG emission offset, due to the substitution of natural gas with SRC biomass, was credited to the GHG budget of the SRC site. Emissions generated by the use of biomass (FEXP) were also considered. Suitability was finally assessed by comparing the GHG budgets of the two sites. CO2 uptake was 3512 ± 224 g CO2 m−2 at the SRC site in 2 years, and 1838 ± 107 g CO2 m−2 at the REF site. FEXP was equal to 1858 ± 240 g CO2 m−2 at the REF site, thus basically compensating for FCO2, while it was 1118 ± 521 g CO2 m−2 at the SRC site. The SRC site could offset 379.7 ± 175.1 g CO2eq m−2 from fossil fuel displacement. Soil CH4 and N2O fluxes were negligible. FMAN made up 2 and 4 % in the GHG budgets of SRC and REF sites respectively, while the SOC loss was 455 ± 524 g CO2 m−2 in 2 years. Overall, the REF site was close to neutrality from a GHG perspective (156 ± 264 g CO2eq m−2), while the SRC site was a net sink of 2202 ± 792 g CO2eq m−2. In conclusion the experiment led to a positive evaluation from a GHG viewpoint of the conversion of cropland to bioenergy SRC.


2018 ◽  
pp. 179-186
Author(s):  
V.L. Cochran ◽  
S.F. Schlentner ◽  
A.R. Mosier

2018 ◽  
Author(s):  
Jacqueline R. England ◽  
Raphael Armando Viscarra Rossel

Abstract. Maintaining or increasing soil organic carbon (C) is important for securing food production, and for mitigating greenhouse gas (GHG) emissions, climate change and land degradation. Some land management practices in cropping, grazing, horticultural and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one needs measurements of soil organic C concentration, bulk density and gravel content, but using conventional laboratory-based analytical methods is expensive. Our aim here is to review the current state of proximal sensing for the development of new soil C accounting methods for emissions reporting and in emissions reduction schemes. We evaluated sensing techniques in terms of their rapidity, cost, accuracy, safety, readiness and their state of development. The most suitable technique for measuring soil organic C concentrations appears to be vis–NIR spectroscopy and for bulk density active gamma-ray attenuation. Sensors for measuring gravel have not been developed, but an interim solution with rapid wet-sieving and automated measurement appears useful. Field-deployable, multi-sensor systems are needed for cost-efficient soil C accounting. Proximal sensing can be used for soil organic C accounting, but the methods need to be standardised and procedural guidelines need to be developed to ensure proficient measurement and accurate reporting and verification. This is particularly important if the schemes use financial incentives for landholders to adopt management practices to sequester soil organic C. We list and discuss the requirements for the development of new soil C accounting methods that are based on proximal sensing, including requirements for recording, verification and auditing.


2021 ◽  
Author(s):  
Ana Andreu ◽  
Elisabet Carpintero ◽  
Pedro Gómez-Giraldez ◽  
Maria P. González-Dugo

<p>Semiarid oak savannas (grasslands with scattered trees), partially covered, subject to regular droughts, grazing, and high levels of solar radiation, are nonetheless, typically carbon sinks regarding CO2. However, dehesas are a productive system, a trait shared with other savannas, and they are shaped by their uses for economic production. One of its multiple uses, livestock extensive farming, key to its economic profitability and to the preservation of the agrosilvopastoral system structure, modifies the Greenhouse gas (GHG) balance by adding a significant amount of CH4 and N2O into the cycle. Recent reports and publications have evaluated and compared different types of livestock management within the context of climate change. GHG emissions, extensive use of the soil resource, or the introduction of nitrogen into the system, are some of the generated effects that cause a negative evaluation of extensive farming. Nevertheless, the importance of this sector, given its extension and impact on production and rural development, demands a more rigorous evaluation. It is necessary to precisely account for the fluxes in their totality (including the CO2 sink effect) and the relationships between them. Currently, there are few studies that determine the GHG balance of dehesas, and they are mainly centred on CO2 fluxes without integrating the influence of livestock, or in meadows without a tree layer (which changes the CO2 balance). The net global warming potential of dehesas is unknown, given that very few direct and long-term flux measurements have been taken on them. In this work, CO2 and H2O fluxes from an eddy covariance tower located in an Andalusian dehesa were processed (standard corrections), filtered and homogenized, including filling gaps using artificial neural networks. We calculated the annual CO2 budget since 2015, to assess the sink/source nature of the area. In a modeling exercise to be able to close the carbon cycle, we estimated CH4 and N2O depending on the number of livestock present in the area by season/year, evaluating the tipping point.</p>


2019 ◽  
Vol 16 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Qingliang Tang ◽  
Lie Ming Tang

ABSTRACT Greenhouse gas (GHG) emissions control requires coordinated efforts and collaboration at all levels of governmental bodies, non-for-profit organizations, and private sectors. However, the target is difficult to achieve due to challenges arising from conflicts of interest and lack of trust between stakeholders. Thus, we propose a distributed carbon ledger (DCL) system using blockchain technology. Our analysis suggests that the adoption of DCL not only strengthens the corporate accounting system for carbon asset management but also fits within existing market-based emissions trading schemes (ETSs). Blockchain-enabled DCL allows the integration of national emission trading schemes (ETSs) and corporate carbon asset management into a synthetic single mechanism. JEL Classifications: M41; O44.


2019 ◽  
Vol 38 (1) ◽  
pp. 174-192 ◽  
Author(s):  
Henry J Boer

Across developing countries substantial effort and resources have been dedicated to setting up systems for the measurement, recording and verification of greenhouse gas emissions in the forestry and land-use sectors – a key initiative of the global climate programme Reducing Emissions from Deforestation and Forest Degradation. This paper approaches these systems through the lens of conservation biopolitics, identifying the calculative processes and spatial logics that attempt to regulate the life and death of the forest. It uses an example of the Indonesian National Carbon Accounting System to explore how a biopolitical apparatus of constant data accumulation and presentation integrates an infinitely complex set of ecological processes across highly differentiated spatial landscapes, and organises these into governable carbon domains. The Indonesian National Carbon Accounting System provides a visual and numeric representation of the various policy and socio-economic processes that drive and limit carbon emissions, and identifies where this occurs in the landscape. By understanding these forest–carbon–human dynamics, programmes can be designed that change how populations access, use and potentially restore the life of the forest. For state and non-state interests alike, the System was viewed as a critical tool for both developing and evaluating the performance of multiple forest carbon initiatives. It also offers a surveillance apparatus to regulate the carbon market and to discipline the actions of various agents that utilise forests and land. Critically, the biopolitical utility of these systems have been undermined by waning commitment within Indonesia to overhaul forest governance towards carbon outcomes.


Sign in / Sign up

Export Citation Format

Share Document