The biopolitics of carbon accounting in Indonesia’s forests

2019 ◽  
Vol 38 (1) ◽  
pp. 174-192 ◽  
Author(s):  
Henry J Boer

Across developing countries substantial effort and resources have been dedicated to setting up systems for the measurement, recording and verification of greenhouse gas emissions in the forestry and land-use sectors – a key initiative of the global climate programme Reducing Emissions from Deforestation and Forest Degradation. This paper approaches these systems through the lens of conservation biopolitics, identifying the calculative processes and spatial logics that attempt to regulate the life and death of the forest. It uses an example of the Indonesian National Carbon Accounting System to explore how a biopolitical apparatus of constant data accumulation and presentation integrates an infinitely complex set of ecological processes across highly differentiated spatial landscapes, and organises these into governable carbon domains. The Indonesian National Carbon Accounting System provides a visual and numeric representation of the various policy and socio-economic processes that drive and limit carbon emissions, and identifies where this occurs in the landscape. By understanding these forest–carbon–human dynamics, programmes can be designed that change how populations access, use and potentially restore the life of the forest. For state and non-state interests alike, the System was viewed as a critical tool for both developing and evaluating the performance of multiple forest carbon initiatives. It also offers a surveillance apparatus to regulate the carbon market and to discipline the actions of various agents that utilise forests and land. Critically, the biopolitical utility of these systems have been undermined by waning commitment within Indonesia to overhaul forest governance towards carbon outcomes.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7606 ◽  
Author(s):  
Bruno D.V. Marino ◽  
Martina Mincheva ◽  
Aaron Doucett

The commercial asset value of sequestered forest carbon is based on protocols employed globally; however, their scientific basis has not been validated. We review and analyze commercial forest carbon protocols, claimed to have reduced net greenhouse gas emissions, issued by the California Air Resources Board and validated by the Climate Action Reserve (CARB-CAR). CARB-CAR forest carbon offsets, based on forest mensuration and model simulation, are compared to a global database of directly measured forest carbon sequestration, or net ecosystem exchange (NEE) of forest CO2. NEE is a meteorologically based method integrating CO2 fluxes between the atmosphere, forest and soils and is independent of the CARB-CAR methodology. Annual carbon accounting results for CAR681 are compared with NEE for the Ameriflux site, Howland Forest Maine, USA, (Ho-1), the only site where both methods were applied contemporaneously, invalidating CARB-CAR protocol offsets. We then test the null hypothesis that CARB-CAR project population data fall within global NEE population values for natural and managed forests measured in the field; net annual gC m−2yr−1 are compared for both protocols. Irrespective of geography, biome and project type, the CARB-CAR population mean is significantly different from the NEE population mean at the 95% confidence interval, rejecting the null hypothesis. The CARB-CAR population exhibits standard deviation ∼5× that of known interannual NEE ranges, is overcrediting biased, incapable of detecting forest transition to net positive CO2 emissions, and exceeds the 5% CARB compliance limit for invalidation. Exclusion of CO2 efflux via soil and ecosystem respiration precludes a valid net carbon accounting result for CARB-CAR and related protocols, consistent with our findings. Protocol invalidation risk extends to vendors and policy platforms such as the United Nations Program on Reducing Emissions from Deforestation and Forest Degradation (REDD+) and the Paris Agreement. We suggest that CARB-CAR and related protocols include NEE methodology for commercial forest carbon offsets to standardize methods, ensure in situ molecular specificity, verify claims of carbon emission reduction and harmonize carbon protocols for voluntary and compliance markets worldwide.


2019 ◽  
Author(s):  
Bruno D V Marino ◽  
Martina Mincheva ◽  
Aaron Doucett

The commercial asset value of sequestered forest carbon is based on protocols employed globally, however, their scientific basis has not been validated. We review and analyze commercial forest carbon protocols and offsets, claimed to have reduced net greenhouse gas emissions, issued by the California Air Resources Board and validated by the Climate Action Reserve (CARB-CAR). CARB-CAR protocol annual offsets, resulting from forest mensuration and growth simulation models, are compared with a population of forest field sites for which annual net ecosystem exchange (NEE) of carbon was measured directly as flux by CO2 eddy covariance, a meteorologically based method integrating forest carbon pools. We characterize differences between the protocols by testing the null hypothesis that the CARB-CAR commercial annual offset data fall within the boundaries of directly measured forest carbon NEE; gC m-2yr-1 are compared for both datasets. Irrespective of geographic location and project type, the CARB-CAR population annual mean value is significantly different from the NEE population mean at the 95% confidence interval, rejecting the null hypothesis. The CARB-CAR population exhibits standard deviation ~5x that of the NEE natural ranges; the variance exceeds the 5% compliance limit for invalidation of CARB-CAR offsets. Exclusion of the soil carbon pool typical for CARB-CAR net carbon budgets pose insuperable carbon accounting uncertainty for offsets that extend to vendor platforms and policies including the United Nations Program on Reducing Emissions from Deforestation and Forest Degradation and the Paris Agreement. NEE methodology for commercial forest carbon offsets ensures in situ molecular specificity, verification of claims for net carbon balance, performance-based pricing and harmonization of carbon protocols for voluntary and compliance markets worldwide, in contrast to continuing uncertainty posed by traditional estimation-based forest carbon protocols.


2019 ◽  
Author(s):  
Bruno D V Marino ◽  
Martina Mincheva ◽  
Aaron Doucett

The commercial asset value of sequestered forest carbon is based on protocols employed globally, however, their scientific basis has not been validated. We review and analyze commercial forest carbon protocols and offsets, claimed to have reduced net greenhouse gas emissions, issued by the California Air Resources Board and validated by the Climate Action Reserve (CARB-CAR). CARB-CAR protocol annual offsets, resulting from forest mensuration and growth simulation models, are compared with a population of forest field sites for which annual net ecosystem exchange (NEE) of carbon was measured directly as flux by CO2 eddy covariance, a meteorologically based method integrating forest carbon pools. We characterize differences between the protocols by testing the null hypothesis that the CARB-CAR commercial annual offset data fall within the boundaries of directly measured forest carbon NEE; gC m-2yr-1 are compared for both datasets. Irrespective of geographic location and project type, the CARB-CAR population annual mean value is significantly different from the NEE population mean at the 95% confidence interval, rejecting the null hypothesis. The CARB-CAR population exhibits standard deviation ~5x that of the NEE natural ranges; the variance exceeds the 5% compliance limit for invalidation of CARB-CAR offsets. Exclusion of the soil carbon pool typical for CARB-CAR net carbon budgets pose insuperable carbon accounting uncertainty for offsets that extend to vendor platforms and policies including the United Nations Program on Reducing Emissions from Deforestation and Forest Degradation and the Paris Agreement. NEE methodology for commercial forest carbon offsets ensures in situ molecular specificity, verification of claims for net carbon balance, performance-based pricing and harmonization of carbon protocols for voluntary and compliance markets worldwide, in contrast to continuing uncertainty posed by traditional estimation-based forest carbon protocols.


2013 ◽  
Vol 13 (4) ◽  
pp. 123-143 ◽  
Author(s):  
Henry Boer

Governing carbon stored in natural and human-managed ecosystems is an emerging area in global climate politics. Many developed and developing countries are devising and implementing a range of reform programs that aim to reduce emissions and increase sequestration in the land use, land use change and forestry, and agricultural sectors. In developing countries, mitigation programs and projects on the ground have accelerated under the global program Reducing Emissions from Deforestation and Forest Degradation (REDD+). The article applies a governmentality framework to analyze these policies and programs as forms of administrative, economic, and deliberative rationalities and associated technologies. What emerges in the analysis is that governing is conducted through common technologies including policy instruments and rules, stakeholder engagement processes, and the application of the same technical monitoring and carbon accounting methodologies. In the case of REDD+, there has been strong emphasis on the introduction of market and incentive approaches, but the major reforms have focused on government regulatory programs and building technical and administrative capacity. Importantly, this is allowing national and sub-national governments to extend their authority across all aspects of the reform agenda, which poses significant challenges for reducing forest loss in developing countries.


2015 ◽  
Author(s):  
Christopher W. Woodall ◽  
John W. Coulston ◽  
Grant M. Domke ◽  
Brian F. Walters ◽  
David N. Wear ◽  
...  

Author(s):  
Tze San Ong ◽  
Nur Fatin Binti Kasbun ◽  
Boon Heng Teh ◽  
Haslinah Muhammad ◽  
Sohail Ahmad Javeed

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 436
Author(s):  
Bruno D. V. Marino ◽  
Nahuel Bautista ◽  
Brandt Rousseaux

Forest carbon sequestration is a widely accepted natural climate solution. However, methods to determine net carbon offsets are based on commercial carbon proxies or CO2 eddy covariance research with limited methodological comparisons. Non-CO2 greenhouse gases (GHG) (e.g., CH4, N2O) receive less attention in the context of forests, in part, due to carbon denominated proxies and to the cost for three-gas eddy covariance platforms. Here we describe and analyze results for direct measurement of CO2, CH4, and N2O by eddy covariance and forest carbon estimation protocols at the Howland Forest, ME, the only site where these methods overlap. Limitations of proxy-based protocols, including the exclusion of sink terms for non-CO2 GHGs, applied to the Howland project preclude multi-gas forest products. In contrast, commercial products based on direct measurement are established by applying molecule-specific social cost factors to emission reductions creating a new forest offset (GHG-SCF), integrating multiple gases into a single value of merit for forest management of global warming. Estimated annual revenue for GHG-SCF products, applicable to the realization of a Green New Deal, range from ~$120,000 USD covering the site area of ~557 acres in 2021 to ~$12,000,000 USD for extrapolation to 40,000 acres in 2040, assuming a 3% discount rate. In contrast, California Air Resources Board compliance carbon offsets determined by the Climate Action Reserve protocol show annual errors of up to 2256% relative to eddy covariance data from two adjacent towers across the project area. Incomplete carbon accounting, offset over-crediting and inadequate independent offset verification are consistent with error results. The GHG-SCF product contributes innovative science-to-commerce applications incentivizing restoration and conservation of forests worldwide to assist in the management of global warming.


2021 ◽  
Vol 14 (3) ◽  
pp. 45
Author(s):  
Eugene L Chia ◽  
Augustin Corin B Bi Bitchick ◽  
Didier Hubert ◽  
Mirrande M Azai ◽  
Maxime M Nguemadji

The international community has acknowledged the critical role of results-based avoided deforestation and forest degradation, sustainable management of forest, conservation and enhancement of carbon stocks (REDD+) activities in curbing climate change. However, ensuring that REDD+ programs and projects deliver carbon and non-carbon results, remains a challenge. This paper analyses results-based determinants in REDD+ projects in Cameroon. Experiences from these projects are expected to inform the design and implementation of sustainable and effective REDD+ projects. It draws on data collected from feasibility study reports, project design documents, project evaluation reports and the opinions and perspectives of 86 REDD+ stakeholders. Findings indicate that projects employed a combination of incentives, disincentives and enabling measures towards achieving the intended REDD+ results. However, none of the projects proposed conditional incentives (direct payments) to land owners and users, the key innovation brought by REDD+. Despite the fact that these projects are branded REDD+ projects, they offer little or no experiences on the relationship between REDD+ payments and carbon and non-carbon outcomes. Achieving results from REDD+ projects depend on how effective choices are made by stakeholders in relation to the type of instruments/interventions and the location of projects, and the ability to make choices further depends on the technical capacity of stakeholders. Thus, the capacity of stakeholders to be involve in REDD+ project design and implementation should be strengthened, in order for them to better appraise the results-based requirements of REDD+.


Oryx ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 216-221 ◽  
Author(s):  
Amy Hinsley ◽  
Abigail Entwistle ◽  
Dorothea V. Pio

AbstractOriginally proposed in 2005 as a way to use financial incentives to tackle global climate change, Reducing Emissions from Deforestation and forest Degradation (REDD) has evolved to include conservation, sustainable management of forests and enhancement of forest carbon stocks, in what is now known as REDD+. Biodiversity protection is still viewed principally as a co-benefit of the REDD+ process, with conservation of forest tree cover and carbon stocks providing the main measure of success. However, focusing solely on tree cover and carbon stocks does not always protect other species, which may be threatened by other factors, most notably hunting. We present evidence from the literature that loss of biodiversity can affect forest composition, tree survival and forest resilience and may in some cases ultimately lead to a reduction in carbon storage. We argue that REDD+ projects should specifically mitigate for threats to biodiversity if they are to maximize carbon storage potential in the long term.


Sign in / Sign up

Export Citation Format

Share Document