Impacts of landform, land use and soil type on soil chemical properties and enzymatic activities in a Loessial Gully watershed

Soil Research ◽  
2014 ◽  
Vol 52 (5) ◽  
pp. 453 ◽  
Author(s):  
Yajun Hao ◽  
Qingrui Chang ◽  
Linhai Li ◽  
Xiaorong Wei

Understanding the relationships among soil properties and, in turn, their relationships with landform, land use and soil type is essential for assessing soil quality and soil productivity. In this study, we examined the differences in the chemical properties and enzymatic activities of soils in a variety of landforms (plateau land, sloping land, terraced land and gully bottoms), land uses (woodland, grassland, cropland and orchard) and soil types (Chernozems, Cambisols and Regosols) in a gully watershed on the Loess Plateau, China. In total, 202 samples of surface soil (0–20 cm) were collected from different representative landscape units of the watershed. The chemical properties and enzymatic activities of the soils were measured. The results showed that chemical properties and enzymatic activities of the soils were all significantly influenced by landform, land use and soil type. There were interactive effects between landform and soil type. Soil pH varied the least, while invertase activity varied the most with landscape conditions. Soil pH, cation exchange capacity, organic carbon and total nitrogen contents, and enzymatic activities were all highest on plateau land and lowest on terraced land. Soil organic carbon and total nitrogen contents and alkaline phosphatase and invertase activities were higher in Chernozems than in Regosols, but the opposite trend was noted for pH, cation exchange capacity and catalase activity. Significantly higher values for most soil properties or enzymatic activities occurred in combinations including plateau land, Chernozems or Regosols. Soil pH was significantly lower in woodland soils than for other land uses, whereas the other properties had higher values in grassland and woodland soils than in orchard soils. The results from this study indicate the roles of landform, land use and soil type on the spatial patterns of chemical properties and enzymatic activities of soils and suggest that crops and orchards should be arranged on plateau land, and grasses and woodland on terraced and sloping land, respectively, for better economic and ecological efficiency in the area.

Soil Research ◽  
2020 ◽  
Vol 58 (4) ◽  
pp. 411
Author(s):  
Jin-Hua Yuan ◽  
Sheng-Zhe E ◽  
Zong-Xian Che

Mineral composition and alkaline properties of palygorskite (Pal), and its ameliorative effects on chemical properties of acid soil were investigated. Dolomite was the main form of alkali in Pal and the acid neutralisation capacity of Pal was 215 cmol kg–1. Incubation experiments indicated that Pal incorporation increased soil pH, cation exchange capacity, base saturation and exchangeable K+, Na+, Ca2+ and Mg2+ contents, and decreased the levels of exchangeable H+, Al3+ and acidity, over a 1-year period. The ameliorative mechanisms were the dissolution of major alkaline matter in Pal (i.e. dolomite), and the exchange between released Ca2+ and Mg2+ with H+ in acidic soil. Hence, Pal can be used as a moderate acidic soil amendment.


Author(s):  
Hermann C. de Albuquerque ◽  
Geraldo R. Zuba Junio ◽  
Regynaldo A. Sampaio ◽  
Luiz A. Fernandes ◽  
Fabiano B. S. Prates ◽  
...  

ABSTRACTThis study aimed to evaluate the residual effect of sewage sludge fertilization on yield and nutrition of sunflower in its second cycle. The experiment was carried out from April to August 2012. The treatments consisted of four doses of sewage sludge (0, 10, 20 and 30 t ha-1, dry basis) applied in the first cycle of sunflower, distributed in a randomized block design, with six replicates. Sunflower stem diameter, plant height, capitulum diameter and yield increased with the increment in sewage sludge doses, with maximum values observed with the dose of 30 t ha-1. The contents of calcium and magnesium in the soil, pH, sum of bases, effective and potential cation exchange capacity and base saturation increased, while potential acidity and the contents of manganese and iron in the leaves decreased, with the increment in the residual doses of sewage sludge. There was a reduction in yield and growth characteristics of sunflower in the second cycle; thus, additional fertilization with sewage sludge is recommended in each new cycle.


Author(s):  
C. V. Ogbenna ◽  
V. E. Osodeke

Aim: A pot experiment was carried out to determine the effect of sawdust ash and lime (Ca(OH)2) on soil characteristics and yield of sunflower in acidic soil of southeastern Nigeria. Study Design: The experiment was laid out in split-plot design, using sawdust ash (0, 1, 2, 3, 4 t ha-1) as the sub plot and lime (0, 0.5, 1.0, 1.5 t ha-1) as the main plot. Place and Duration of Study: Study was conducted outdoors at Michael Okpara University of Agriculture Umudike, Nigeria, during the 2010 planting season. Materials and Methods: Treatment combinations were applied to the 60 buckets containing soil, mixed thoroughly and watered adequately. After 1 week of treatment application, two sunflower seeds were planted and later thinned to one seedling per bucket. Plant growth and yield data were collected. Pre planting and post-harvest soil samples were collected and analyzed for soil properties. Results: Results showed that with the exception of organic carbon there was significant effect of treatments on all soil chemical properties. Lime and sawdust ash (SDA) as single and combined treatments significantly increased total nitrogen (P=0.05), available phosphorus (P<0.010), and base saturation (P<0.012). The interaction between SDA and lime significantly (P=0.05) increased total exchangeable bases and effective cation exchange capacity, while soil pH was significantly increased (P=0.05) by single applications. The increases in soil chemical properties led to significant positive response of the sunflower. With the exception of number of leaves, other plant parameters (Plant height, stem diameter, head weight, 50 seed weight, head diameter) had significant increases for sawdust ash alone at P=0.05. Correlation studies showed positive significant relationship between soil pH and sunflower yield. Conclusion: The study showed that sunflower performed best at the combination of 3 tha-1 SDA and 1.5 t ha-1 lime producing a mean head weight of 45.4 g.


2014 ◽  
Vol 4 ◽  
Author(s):  
Verónica Asensio Fandiño ◽  
Flora A. Vega ◽  
Rubén Forján ◽  
Emma F. Covelo

The sorption capacity for Ni, Pb and Zn of mine tailings soil with and without reclamation treatment (tree planting and waste amendment) was evaluated using the batch adsorption technique. It is important to determine the capacity of waste-amended soils to retain Ni, Pb and Zn, as the sludges used usually have high concentrations of these metals. The results obtained in the present study showed that the untreated mine tailings soil had a low capacity for Ni, Pb and Zn retention. The sorption capacity for Pb increased significantly in all of the treated soils, without any significant differences between them. The treatment that most increased the sorption capacity for Ni and Zn was planting with trees and amending with waste simultaneously, as this increased the concentration of both organic and inorganic carbon, exchangeable calcium, soil pH and effective cation exchange capacity


2018 ◽  
Vol 37 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Dadi Feyisa ◽  
Endalkachew Kissi ◽  
Zerihun Kebebew

AbstractDespite their restriction, smallholder farmers have been continuing growing Eucalyptus globulus in the cultivated land in the central highland of Ethiopia. Literature has shown controversial issues against E. globulus. Therefore, the objective of the study was to investigate the compatibility of E. globulus in the smallholder farmers’ land use system. Soil samples were collected from five different land uses and analysed for selected physical and chemical properties. The socioeconomic contribution of E. globulus was collected through household surveys from 110 households. Analysis of soil showed that organic carbon (OC), total nitrogen (TN) and cation exchange capacity (CEC) were significantly higher (P<0.05) under E. globulus compared to the cultivated land. The survey results also showed that the largest proportion (58%) of households was interested in growing E. globulus because of its multiple uses. About 83% of households responded that E. globulus help them to attain food security through increasing the purchasing power of smallholder farmers to buy agricultural inputs and food. This study has substantiated the role of E. globulus in the land use system of smallholder farmers. Most of the soil fertility indicators were better under E. globulus. The present finding reveals that E. globulus degrade the soil seemingly difficult to generalise. Growing E. globulus must be promoted under appealing land use to enhance smallholder farmers’ livelihoods. Removing E. globulus from the land use system may jeopardise the food security situation of many households.


1969 ◽  
Vol 69 (3) ◽  
pp. 357-365
Author(s):  
Edmundo Rivera ◽  
José Rodríguez ◽  
Fernando Abruña

The effect of acidity factors of two Ultisols and one Oxisol on yield and foliar composition of tomatoes was determined. Yields were not markedly reduced by acidity in the Ultisols until pH dropped to around 4.6 with 45% Al saturation of the cation exchange capacity (CEC), and no yield was produced at about pH 4.1 and 80% Al saturation. In the Oxisol, tomato yields dropped steadily from 39.7 t/ha, when there was no exchangeable AI, to 17.5 t/ha at the highest level of acidity, pH 4.4 and 43% AI saturation. In all soils, yields were closely correlated with soil pH, exchangeable Al and Ca and Al/Ca.


Soil Research ◽  
2012 ◽  
Vol 50 (7) ◽  
pp. 570 ◽  
Author(s):  
Jin-Hua Yuan ◽  
Ren-Kou Xu

The chemical compositions of biochars from ten crop residues generated at 350°C and their effects on chemical properties of acid soils from tropical and subtropical China were investigated. There was greater alkalinity and contents of base cations in the biochars from legume residues than from non-legume residues. Carbonates and organic anions of carboxyl and phenolic groups were the main forms of alkalis in the biochars, and their relative contributions to biochar alkalinity varied with crop residues. Incubation experiments indicated that biochar incorporation increased soil pH and soil exchangeable base cations and decreased soil exchangeable acidity. There were greater increases in soil pH and soil exchangeable base cations, and a greater decrease in soil exchangeable acidity, for biochars from legume than from non-legume residues. The biochars did not increase the cation exchange capacity (CEC) of soils with relatively high initial CEC but did increase the CEC of soils with relatively low initial CEC at an addition level of 1%. The incorporation of biochars from crop residues not only corrected soil acidity but also increased contents of potassium, magnesium, and calcium in these acid soils from tropical and subtropical regions and thus improved soil fertility.


2020 ◽  
Author(s):  
Yadesa Bato ◽  
Tamrat Bekele ◽  
Sebsebe Demissew

Abstract Background: Soil chemical properties have changed under different land-use systems and soil depth layers either by increasing or decreasing. Hence, scientifically information on the soil chemical properties dynamics under different land-use systems and soil depths are crucial for best land management practices, and to avoiding ecological negative impacts of it for sustainable development. The study aimed to evaluate the soil chemical properties dynamics under different land-use systems and soil depths in the central highlands of Ethiopia. The land-use systems included natural forest, four exotic tree plantation species (Eucalyptus globules, Cupressus lusitanica, Grevillea robusta, and Pinus patula), grassland, grazing land, and cropland. Results: The analysis of variance (ANOVA) for the majority of soil chemical properties of OC, TN, Avial. P, soil pH, EC, CEC, and exchangeable bases (Ca, Mg, K, Na) were showed that significant variations among land-use systems (P<0.0001). The highest mean values of OC (3.49 % DM ), TN ( 0.31 % DM) , Avail.P (31.52 mg/kg of soil ), CEC ( 33.63 meq/100gm soil), Exch. Ca (17.13 cmol(+)/kg soil), Exch. Mg (5.37 cmol(+)/kg soil), and Exch. K ( 3.60 cmol(+)/kg soil) were observed under natural forest than others of land-use systems. The results also showed that the lowest mean values of OC (1.47 % DM), TN (0.13 %DM), soil pH (5.38), CEC (18.98 meq/100gm soil), Exch. Ca (9.93 cmol(+)/kg soil), Exch. K (1.20 cmol(+)/kg soil), and Exch. Na (0.22 cmol(+)/kg soil) were recorded under cropland than other land-use systems. The highest mean values of EC (3.47ds/m), and Exch. Na (0.60 cmol(+)/kg soil) were observed under Eucalyptus globulus plantation forest. The overall mean values of OC, TN, Avail.P, CEC, Exch. Mg, Exch. Ca, Exch. K, and Exch. Na accumulation at the topsoil layer was higher than that of the subsoil layer except for soil pH and EC. Conclusion: In general, the majority of soil chemical properties under cropland and Eucalyptus globulus plantation forest were poorer than the soils subjected to other land-use systems which indicated that changes in land use systems were significantly affected soil chemical properties.


1977 ◽  
Vol 57 (3) ◽  
pp. 233-247 ◽  
Author(s):  
ROGER W. BARIL ◽  
THI SEN TRAN

Correlations were made among chemical criteria used for taxonomic soil classificaton. The compared tests were: oxalate Δ (Fe + Al), pyrophosphate-extractable (Fe + Al), oxalate-extractable Al, pH-dependent cation exchange capacity (ΔCEC), ratios of pyrophosphate-extractable (Fe + Al) over clay or over dithionite-extractable (Fe + Al), and finally soil pH measured in 1 M NaF. Significant correlations were found among various measured parameters. However, no single test was found to be reliable as a single criterion when applied to the taxonomic classification of Quebec soils. The two chemical tests, pyrophosphate-extractable (Fe + Al) and its ratio over clay, combined with morphologic criteria appeared useful for classifying Quebec Podzols. A few soils, which presented discrepancies from chemical criteria were found difficult to classify, thus suggesting the possibility of establishing new sub-groups in the Canadain soil taxonomic classification system.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 3015
Author(s):  
Fethi Kooli ◽  
Souad Rakass ◽  
Yan Liu ◽  
Mostafa Abboudi ◽  
Hicham Oudghiri Hassani ◽  
...  

The effect of the counteranion of hexadecyltrimethylammonium salts on the physico-chemical properties of organoclays was investigated, using a selected natural clay mineral with a cation exchange capacity of 95 meq/100 g. The uptake amount of C16 cations was dependent on the hexadecyltrimethylammonium (C16) salt solution used, the organoclay prepared from C16Br salt solution exhibited a value of 1. 05 mmole/g higher than those prepared from C16Cl and C16OH salt solutions. The basal spacing of these organoclays was in the range of 1.81 nm to 2.10 nm, indicating a similar orientation of the intercalated surfactants, and could indicated that the excess amount of surfactants, above the cation exchange capacity of 0.95 meq/g could be adsorbed on the external surface of the clay mineral sheets. These organoclays were found to be stable in neutral, acidic, and basic media. The thermal stability of these organoclays was carried out using thermogravimetric analysis and in-situ X-ray diffraction (XRD) techniques. The decomposition of the surfactant occurred at a maximum temperature of 240 °C, accompanied with a decrease of the basal spacing value close to 1.42 nm. The application of these organoclays was investigated to remove an acidic dye, eosin. The removal amount was related to the initial used concentrations, the amount of the surfactants contents, and to the preheated temperatures of the organoclays. The removal was found to be endothermic process with a maximum amount of 55 mg of eosin/g of organoclay. The value decreased to 25 mg/g, when the intercalated surfactants were decomposed. The reuse of these organoclays was limited to four regeneration recycles with a reduction of 20 to 30%. However, noticeable reduction between 35% to 50% of the initial efficiency, was achieved after the fifth cycle, depending of the used organoclays.


Sign in / Sign up

Export Citation Format

Share Document