scholarly journals Greenhouse gas (N2O and CH4) fluxes under nitrogen-fertilised dryland wheat and barley on subtropical Vertosols: risk, rainfall and alternatives

Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 634 ◽  
Author(s):  
Graeme D. Schwenke ◽  
David F. Herridge ◽  
Clemens Scheer ◽  
David W. Rowlings ◽  
Bruce M. Haigh ◽  
...  

The northern Australian grains industry relies on nitrogen (N) fertiliser to optimise yield and protein, but N fertiliser can increase soil fluxes of nitrous oxide (N2O) and methane (CH4). We measured soil N2O and CH4 fluxes associated with wheat (Triticum aestivum) and barley (Hordeum vulgare) using automated (Expts 1, 3) and manual chambers (Expts 2, 4, 5). Experiments were conducted on subtropical Vertosol soils fertilised with N rates of 0–160kgNha–1. In Expt 1 (2010), intense rainfall for a month before and after sowing elevated N2O emissions from N-fertilised (80kgNha–1) wheat, with 417gN2O-Nha–1 emitted compared with 80g N2O-Nha–1 for non-fertilised wheat. Once crop N uptake reduced soil mineral N, there was no further treatment difference in N2O. Expt 2 (2010) showed similar results, however, the reduced sampling frequency using manual chambers gave a lower cumulative N2O. By contrast, very low rainfall before and for several months after sowing Expt 3 (2011) resulted in no difference in N2O emissions between N-fertilised and non-fertilised barley. N2O emission factors were 0.42, 0.20 and –0.02 for Expts 1, 2 and 3, respectively. In Expts 4 and 5 (2011), N2O emissions increased with increasing rate of N fertiliser. Emissions were reduced by 45% when the N fertiliser was applied in a 50:50 split between sowing and mid-tillering, or by 70% when urea was applied with the nitrification inhibitor 3,4-dimethylpyrazole-phosphate. Methane fluxes were typically small and mostly negative in all experiments, especially in dry soils. Cumulative CH4 uptake ranged from 242 to 435g CH4-Cha–1year–1, with no effect of N fertiliser treatment. Considered in terms of CO2 equivalents, soil CH4 uptake offset 8–56% of soil N2O emissions, with larger offsets occurring in non-N-fertilised soils. The first few months from N fertiliser application to the period of rapid crop N uptake pose the main risk for N2O losses from rainfed cereal cropping on subtropical Vertosols, but the realisation of this risk is dependent on rainfall. Strategies that reduce the soil mineral N pool during this time can reduce the risk of N2O loss.

Soil Research ◽  
2019 ◽  
Vol 57 (8) ◽  
pp. 859 ◽  
Author(s):  
G. D. Schwenke ◽  
B. M. Haigh

Most soil nitrous oxide (N2O) emissions from rain-fed grain sorghum grown on sub-tropical Vertosols in north-west New South Wales, Australia, occur between fertiliser nitrogen (N) application at sowing and booting growth stage. At three experiments, we investigated the potential for deferring some (split-N) or all (delayed) fertiliser N until booting to mitigate N2O produced without compromising optimum crop yields. N products included urea, 3,4-dimethyl pyrazole phosphate (DMPP)-urea, polymer-coated urea (PCU) and N-(n-butyl)thiophosphoric triamide (NBPT)-urea. For a fourth experiment, the N fertiliser rate was varied according to pre-sowing soil mineral N stocks left by different previous crops. All experiments incorporated 15N mini-plots to determine whether delayed or split-N affected crop N uptake or residual soil N. Compared to urea applied at-sowing, delayed applications of urea, DMPP-urea or NBPT-urea at booting reduced the N2O emission factor (EF, percentage of applied N emitted) by 67–81%. Crop N uptake, grain yield and protein tended to be lower with delayed N than N at-sowing due to dry mid-season conditions. Much of the unused N remained in the soil at harvest. Split-N (33% sowing:67% booting) using urea, reduced EF by 59% compared to at-sowing urea, but maintained crop N uptake, grain yield and protein. Using DMPP-urea or PCU for the at-sowing portion of the split reduced EF by 84–86%. Grain yield was maintained using PCU, but was lower with DMPP-urea, which had more N in vegetative biomass. Using NBPT-urea for the in-crop portion of the split did not affect N2O emissions or crop productivity. Nitrogen budgeting to account for high pre-sowing soil mineral N nullified urea-induced N2O emissions. An N-budgeted, split-N strategy using urea offers the best balance between N2O mitigation, grain productivity and provision of a soil mineral N buffer against dry mid-season conditions. Split-N using DMPP-urea or PCU further enhanced N2O mitigation but there was no yield response to justify the extra expense.


1987 ◽  
Vol 109 (1) ◽  
pp. 141-157 ◽  
Author(s):  
T. M. Addiscott ◽  
A. P. Whitmore

summaryThe computer model described simulates changes in soil mineral nitrogen and crop uptake of nitrogen by computing on a daily basis the amounts of N leached, mineralized, nitrified and taken up by the crop. Denitrification is not included at present. The leaching submodel divides the soil into layers, each of which contains mobile and immobile water. It needs points from the soil moisture characteristic, measured directly or derived from soil survey data; it also needs daily rainfall and evaporation. The mineralization and nitrification submodel assumes pseudo-zero order kinetics and depends on the net mineralization rate in the topsoil and the daily soil temperature and moisture content, the latter being computed in the leaching submodel. The crop N uptake and dry-matter production submodel is a simple function driven by degree days of soil temperature and needs in addition only the sowing date and the date the soil returns to field capacity, the latter again being computed in the leaching submodel. A sensitivity analysis was made, showing the effects of 30% changes in the input variables on the simulated amounts of soil mineral N and crop N present in spring when decisions on N fertilizer rates have to be made. Soil mineral N was influenced most by changes in rainfall, soil water content, mineralization rate and soil temperature, whilst crop N was affected most by changes in soil temperature, rainfall and sowing date. The model has so far been applied only to winter wheat growing through autumn, winter and spring but it should be adaptable to other crops and to a full season.The model was validated by comparing its simulations with measurements of soil mineral N, dry matter and the amounts of N taken up by winter wheat in experiments made at seven sites during 5 years. The simulations were assessed graphically and with the aid of several statistical summaries of the goodness of fit. The agreement was generally very good; over all years 72% of all simulations of soil mineral N to 90 cm depth were within 20 kg N/ha of the soil measurements; also 78% of the simulations of crop nitrogen uptake were within 15 kg N/ha and 63% of the simulated yields of dry matter were within 25 g/m2 of the amounts measured. All correlation coefficients were large, positive, and highly significant, and on average no statistically significant differences were found between simulation and measurement either for soil mineral N or for crop N uptake.


2020 ◽  
Vol 17 (4) ◽  
pp. 1181-1198 ◽  
Author(s):  
Pauline Sophie Rummel ◽  
Birgit Pfeiffer ◽  
Johanna Pausch ◽  
Reinhard Well ◽  
Dominik Schneider ◽  
...  

Abstract. Chemical composition of root and shoot litter controls decomposition and, subsequently, C availability for biological nitrogen transformation processes in soils. While aboveground plant residues have been proven to increase N2O emissions, studies on root litter effects are scarce. This study aimed (1) to evaluate how fresh maize root litter affects N2O emissions compared to fresh maize shoot litter, (2) to assess whether N2O emissions are related to the interaction of C and N mineralization from soil and litter, and (3) to analyze changes in soil microbial community structures related to litter input and N2O emissions. To obtain root and shoot litter, maize plants (Zea mays L.) were cultivated with two N fertilizer levels in a greenhouse and harvested. A two-factorial 22 d laboratory incubation experiment was set up with soil from both N levels (N1, N2) and three litter addition treatments (control, root, root + shoot). We measured CO2 and N2O fluxes, analyzed soil mineral N and water-extractable organic C (WEOC) concentrations, and determined quality parameters of maize litter. Bacterial community structures were analyzed using 16S rRNA gene sequencing. Maize litter quality controlled NO3- and WEOC availability and decomposition-related CO2 emissions. Emissions induced by maize root litter remained low, while high bioavailability of maize shoot litter strongly increased CO2 and N2O emissions when both root and shoot litter were added. We identified a strong positive correlation between cumulative CO2 and N2O emissions, supporting our hypothesis that litter quality affects denitrification by creating plant-litter-associated anaerobic microsites. The interdependency of C and N availability was validated by analyses of regression. Moreover, there was a strong positive interaction between soil NO3- and WEOC concentration resulting in much higher N2O emissions, when both NO3- and WEOC were available. A significant correlation was observed between total CO2 and N2O emissions, the soil bacterial community composition, and the litter level, showing a clear separation of root + shoot samples of all remaining samples. Bacterial diversity decreased with higher N level and higher input of easily available C. Altogether, changes in bacterial community structure reflected degradability of maize litter with easily degradable C from maize shoot litter favoring fast-growing C-cycling and N-reducing bacteria of the phyla Actinobacteria, Chloroflexi, Firmicutes, and Proteobacteria. In conclusion, litter quality is a major driver of N2O and CO2 emissions from crop residues, especially when soil mineral N is limited.


1995 ◽  
Vol 125 (1) ◽  
pp. 61-68 ◽  
Author(s):  
M. F. Allison ◽  
H. M. Hetschkun

SUMMARYIn 1990–92, field experiments were performed at Broom's Barn Experimental Station to study the effect of 5 years' repeated straw incorporation on sugarbeet. Straw incorporation had no effect on plant population density. Processing quality was reduced by incorporated straw but N had a much larger effect. The effect of incorporated straw on the mineral N content of the soils and N uptake by beet was inconsistent, and this may be related to the amount of soil mineral N present when the straw was incorporated. The efficiency of fertilizer use was unaffected by straw incorporation. On Broom's Barn soils when straw was incorporated, the optimal economic N dressing was c. 120 kg N/ha, and in unincorporated plots it was c. 100 kg N/ha. At the optimal economic N rate, incorporated straw increased beet yields.


2019 ◽  
Author(s):  
Arezoo Taghizadeh-Toosi ◽  
Lars Elsgaard ◽  
Tim J. Clough ◽  
Rodrigo Labouriau ◽  
Vibeke Ernstsen ◽  
...  

Abstract. Drained organic soils are extensively used for cereal and high-value cash crop production or as grazing land, but emissions of nitrous oxide (N2O) are enhanced by the drainage and cultivation. A study was conducted to investigate the regulation of N2O emissions in a raised bog area drained for agriculture. The area has been classified as potentially acid sulfate soil, and we hypothesised that pyrite oxidation was a potential driver of N2O emissions. Two sites with rotational grass, and two sites with a potato crop, were equipped for monitoring of N2O emissions, as well as sub-soil N2O concentrations at 5, 10, 20, 50 and 100 cm depth, during spring and autumn 2015. Precipitation, air and soil temperature, soil moisture, water table (WT) depth, and soil mineral N were recorded during weekly field campaigns. In late April and early September, intact cores were collected to 1 m depth at adjacent grassland and potato sites for analysis of soil properties, which included acid volatile sulfide (AVS) and chromium-reducible sulfur (CRS) to quantify, respectively, iron monosulfide (FeS) and pyrite (FeS2), as well as total reactive iron (TRFe) and nitrite (NO2−). Soil organic matter composition and total reduction capacity was also determined. The soil pH varied between 4.7 and 5.4. Equivalent soil gas phase concentrations of N2O ranged from around 10 µL L−1 at grassland sites to several hundred µL L−1 at potato sites, in accordance with lower soil mineral N concentrations at grassland sites. Total N2O emissions during 152–174 days were 3–6 kg N2O-N ha−1 for rotational grass, and 19–21 kg N2O-N ha−1 for potato sites. Statistical analyses by graphical models showed that soil N2O concentration in the capillary fringe was the strongest predictor for N2O emissions in spring, and for grassland sites also in the autumn. For potato sites in the autumn, nitrate (NO3−) availability in the top soil, together with temperature, were the main controls on N2O emissions. Pyrite oxidation coupled with NO3− reduction could not be dismissed as a source of N2O, but the total reduction capacity of the peat soil was much higher than explained by the FeS2 concentration. The concentrations of TRFe were also much higher than pyrite concentrations, and potentially chemodenitrification could have been a source of N2O during WT drawdown in spring. The N2O emissions associated with rapid soil wetting and WT rise in autumn were consistent with biological denitrification. Soil N availability and seasonal WT changes were important controls of N2O emissions.


HortScience ◽  
2010 ◽  
Vol 45 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Emily R. Vollmer ◽  
Nancy Creamer ◽  
Chris Reberg-Horton ◽  
Greg Hoyt

Cover crops of foxtail millet ‘German Strain R’ [Setaria italica (L.) Beauv.] and cowpea ‘Iron & Clay’ [Vigna unguiculata (L.) Walp.] were grown as monocrops (MIL, COW) and mixtures and compared with a bare ground control (BG) for weed suppression and nitrogen (N) contribution when followed by organically managed no-till bulb onion (Allium cepa L.) production. Experiments in 2006–2007 and 2007–2008 were each conducted on first-year transitional land. Mixtures consisted of cowpea with high, middle, and low seeding rates of millet (MIX-70, MIX-50, MIX-30). During onion production, each cover crop treatment had three N rate subplots (0, 105, and 210 kg N/ha) of surface-applied soybean meal [Glycine max (L.) Merrill]. Cover crop treatments COW and BG had the greatest total marketable onion yield both years. Where supplemental baled millet was applied in 2006–2007, onion mortality was over 50% in MIL and MIX and was attributed to the thickness of the millet mulch. Nitrogen rates of 105 and 210 kg N/ha increased soil mineral N (NO3– and NH4+) on BG plots 2 weeks after surface application of soybean meal each year, but stopped having an effect on soil mineral N by February or March. Split applications of soybean meal could be an important improvement in N management to better meet increased demand for N uptake during bulb initiation and growth in the spring.


2001 ◽  
Vol 136 (1) ◽  
pp. 15-33 ◽  
Author(s):  
R. SYLVESTER-BRADLEY ◽  
D. T. STOKES ◽  
R. K. SCOTT

Experiments at three sites in 1993, six sites in 1994 and eight sites in 1995, mostly after oilseed rape, tested effects of previous fertilizer N (differing by 200 kg/ha for 1993 and 1994 and 300 kg/ha for 1995) and date of sowing (differing by about 2 months) on soil mineral N and N uptake by winter wheat cv. Mercia which received no fertilizer N. Soil mineral N to 90 cm plus crop N (‘soil N supply’; SNS) in February was 103 and 76 kg/ha after large and small amounts of previous fertilizer N respectively but was not affected by date of sowing. Previous fertilizer N seldom affected crop N in spring because sowing was too late for N capture during autumn, but it did affect soil mineral N, particularly in the 60–90 cm soil horizon, presumably due to over-winter leaching. Tillering generally occurred in spring, and was delayed but not diminished by later sowing. Previous fertilizer N increased shoot survival more than it increased shoot production. Final shoot number was affected by previous fertilizer N, but not by date of sowing. Overall, there were 29 surviving tillers/g SNS.N uptakes at fortnightly intervals from spring to harvest at two core sites were described well by linear rates. The difference between sowings in the fitted date with 10 kg/ha crop N was 1 month; these dates were not significantly affected by previous fertilizer. N uptake rates were increased by both previous fertilizer N and late sowing. Rates of N uptake related closely to soil mineral N in February such that ‘equivalent recovery’ was achieved in late May or early June. At one site there was evidence that most of the residue from previous fertilizer N had moved below 90 cm by February, but N uptake was nevertheless increased. Two further ‘satellite’ sites behaved similarly. Thus at 14 out of 17 sites, N uptake until harvest related directly and with approximate parity to soil mineral N in February (R2 = 0·79), a significant intercept being in keeping with an atmospheric contribution of 20–40 kg/ha N at all sites.It is concluded that, on retentive soils in the UK, SNS in early spring was a good indicator of N availability throughout growth of unfertilized wheat, because the N residues arising from previous fertilizer mineralized before analysis, yet remained largely within root range. The steady rates of soil mineral N recovery were taken as being dependent on progressively deeper root development. Thus, even if soil mineral N equated with a crop's N requirement, fresh fertilizer applications might be needed before ‘equivalent recovery’ of soil N, to encourage the earlier processes of tiller production and canopy expansion. The later process of grain filling was sustained by continued N uptake (mean 41 kg/ha) coming apparently from N leached to the subsoil (relating to previous fertilizer use) as well as from sources not related to previous fertilizer use; significant net mineralization was apparent in some subsoils.


Sign in / Sign up

Export Citation Format

Share Document