scholarly journals Pronounced surface stratification of soil phosphorus, potassium and sulfur under pastures upstream of a eutrophic wetland and estuarine system

Soil Research ◽  
2017 ◽  
Vol 55 (7) ◽  
pp. 657 ◽  
Author(s):  
Megan H. Ryan ◽  
Mark Tibbett ◽  
Hans Lambers ◽  
David Bicknell ◽  
Phillip Brookes ◽  
...  

High concentrations of nutrients in surface soil present a risk of nutrient movement into waterways through surface water pathways and leaching. Phosphorus (P) is of particular concern because of its role in aquatic system eutrophication. We measured nutrients under annual pastures on a beef farm and a dairy farm in the Peel–Harvey catchment, Western Australia. Soils were sampled in 10-mm increments to 100mm depth in March, June and September. Plant litter contained approximately 300–550mg kg–1 Colwell-extractable P. Extractable soil P was strongly stratified, being approximately 100–225mg kg–1 (dairy) and 50–110mg kg–1 (beef) in the top 10mm and <40mg kg–1 at 40–50mm depth. Total P and extractable potassium were also highly stratified, whereas sulfur was less strongly stratified. Shoot nutrient concentrations indicated that nitrogen was often limiting and sulfur was sometimes limiting for pasture growth: concentrations of P were often much greater than required for adequate growth (>4mg g–1). We conclude that high P concentrations at the soil surface and in litter and shoots are a source of risk for movement of P from farms into waterways in the Peel–Harvey catchment.

2014 ◽  
Vol 38 (5) ◽  
pp. 1487-1495 ◽  
Author(s):  
Ciro Antonio Rosolem ◽  
Alexandre Merlin

Phosphorus fixation in tropical soils may decrease under no-till. In this case, P fertilizer could be surface-spread, which would improve farm operations by decreasing the time spend in reloading the planter with fertilizers. In the long term, less soluble P sources could be viable. In this experiment, the effect of surface-broadcast P fertilization with both soluble and reactive phosphates on soil P forms and availability to soybean was studied with or without fertilization with soluble P in the planting furrow in a long-term experiment in which soybean was grown in rotation with Ruzigrass (Brachiaria ruziziensis). No P or 80 kg ha-1 of P2O5 in the form of triple superphosphate or Arad reactive rock phosphate was applied on the surface of a soil with variable P fertilization history. Soil samples were taken to a depth of 60 cm and soil P was fractionated. Soybean was grown with 0, 30, and 60 kg ha-1 of P2O5 in the form of triple phosphate applied in the seed furrow. Both fertilizers applied increased available P in the uppermost soil layers and the moderately labile organic and inorganic forms of P in the soil profile, probably as result of root decay. Soybean responded to phosphates applied on the soil surface or in the seed furrow; however, application of soluble P in the seed furrow should not be discarded. In tropical soils with a history of P fertilization, soluble P sources may be substituted for natural reactive phosphates broadcast on the surface. The planting operation may be facilitated through reduction in the rate of P applied in the planting furrow in relation to the rates currently applied.


Soil Research ◽  
1994 ◽  
Vol 32 (3) ◽  
pp. 543 ◽  
Author(s):  
GJ Blair ◽  
AR Till ◽  
C Boswell

The recycling of S from plant litter, dung and urine is an important process for supplying S for pastures. A pot experiment was conducted where 35S-labelled litter (25% white clover/38% ryegrass/21% weed) and S-35-labelled urine and faeces collected from sheep fed the same herbage as was used as litter was surface applied to pots and the fate of the applied S was followed for 100 days with ryegrass as the test plant. In camp soil, 45% of the S applied in urine was taken up by ryegrass plants within 12 days of application. In non-camp soil, the uptake of urine-S was about 20% over the same period. Cumulative uptake of 35S from urine in camp soil was subsequently restricted, with a maximum of 60% eventually measured in plants after 100 days. Mean rates of release of S (0-37 days) from litter and faeces was respectively 16.2 and 4.5 mg g-1 day-1. The calculated half-times from S in the two materials were respectively 43 and 154 days under controlled environmental conditions with adequate moisture. Litter S followed organic matter (OM) decomposition, but faecal S release was initially more rapid than faecal OM decomposition. There was little S release from faeces after day 25. Rather, S was immobilized in faeces during the 25-100 day period. The decomposition of litter and faeces was divided into an initial rapid process during which soluble S and more labile S was released, followed by a slower process involving the release of S from tissues more resistant to mineralization. The uptake of 35S from labelled materials was initially more rapid than would be expected for total S released from the added litter and faeces and the 35Suptake effect was short-lived relative to the continued effect of added material on total S uptake. The preferential uptake of 35S from the surface-applied material appears to be due to limited root development at the early stages of the experiment. Movement of 35S into the soil organic matter pool was very rapid; 58.4% of urine S was in the soil organic matter fraction in the non-camp soil by day 6. The amount of applied S in the organic matter equilibrated at about day 75. The accumulation of applied S from the materials added was greater than that recorded in previously reported studies for inorganic sulfate (e.g. about 50%). Soil P and S status had little effect on rates of release of S. from the applied materials, however, the effect of the camp and non-camp soil on total S recycling was markedly different as a result of the different amounts of plant growth and thus S uptake in the two soils. The decomposition of litter indicated peak rates of S release at two specific times over the 100 days and indicated successional changes in micro-organism activity. With faeces, the experiment was not continued for sufficiently long to show micro-organism effects.


2003 ◽  
Vol 83 (4) ◽  
pp. 337-342 ◽  
Author(s):  
A. Liu ◽  
C. Hamel ◽  
S. H. Begna ◽  
B. L. Ma ◽  
D. L. Smith

The ability of arbuscular mycorrhizal (AM) fungi to help their host plant absorb soil P is well known, but little attention has been paid to the effect of AM fungi on soil P depletion capacity. A greenhouse experiment was conducted to assess, under different P levels, the effects of mycorrhizae on extractable soil P and P uptake by maize hybrids with contrasting phenotypes. The experiment had three factors, including two mycorrhizal treatments (mycorrhizal and non-mycorrhizal), three P fertilizer rates (0, 40, and 80 mg kg-1) and three maize hybrids [leafy normal stature (LNS), leafy reduced stature (LRS) and a conventional hybrid, Pioneer 3979 (P3979)]. Extractable soil P was determined after 3, 6 and 9 wk of maize growth. Plant biomass, P concentration and total P content were also determined after 9 wk of growth. Fertilization increased soil extractable P, plant biomass, P concentration in plants and total P uptake. In contrast to P3979, the LNS and LRS hybrids had higher biomass and total P content when mycorrhizal. Mycorrhizae had less influence on soil extractable P than on total P uptake by plants. The absence of P fertilization increased the importance of AM fungi for P uptake, which markedly reduced soil extractable P under AM plants during growth. This effect was strongest for LNS, the most mycorrhizae-dependent hybrid, intermediate for LRS, and not significant for the commercial hybrid P3979, which did not respond to AM inoculation. Key words: Arbuscular mycorrhizal fungi, extraradical hyphae, maize hybrid,plant biomass, P uptake, soil extractable P


2020 ◽  
Vol 17 (2) ◽  
pp. 441-454 ◽  
Author(s):  
Julian Helfenstein ◽  
Chiara Pistocchi ◽  
Astrid Oberson ◽  
Federica Tamburini ◽  
Daniel S. Goll ◽  
...  

Abstract. Quantification of turnover of inorganic soil phosphorus (P) pools is essential to improve our understanding of P cycling in soil–plant systems and improve representations of the P cycle in land surface models. Turnover can be quantified using mean residence time (MRT); however, to date there is little information on MRT of P in soil P pools. We introduce an approach to quantify MRT of P in sequentially extracted inorganic soil P pools using data from isotope exchange kinetic experiments. Our analyses of 53 soil samples from the literature showed that MRT of labile P (resin- and bicarbonate-extractable P) was on the order of minutes to hours for most soils, MRT in NaOH-extractable P (NaOH-P) was in the range of days to months, and MRT in HCl-extractable P (HCl-P) was on the order of years to millennia. Multiple-regression models were able to capture 54 %–63 % of the variability in MRT among samples and showed that land use was the most important predictor of MRT of P in labile and NaOH pools. MRT of P in HCl-P was strongly dependent on pH, as high-pH soils tended to have longer MRTs. This was interpreted to be related to the composition of HCl-P. Under high pH, HCl-P contains mostly apatite, with a low solubility, whereas under low-pH conditions, HCl-P may contain more exchangeable P forms. These results suggest that current land surface models underestimate the dynamics of inorganic soil P pools and could be improved by reducing model MRTs of the labile and NaOH-P pools, considering soil-type-dependent MRTs rather than universal exchange rates and allowing for two-way exchange between HCl-P and the soil solution.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5419 ◽  
Author(s):  
Sara Sánchez-Esteva ◽  
Maria Knadel ◽  
Sergey Kucheryavskiy ◽  
Lis W. de Jonge ◽  
Gitte H. Rubæk ◽  
...  

Conventional wet chemical methods for the determination of soil phosphorus (P) pools, relevant for environmental and agronomic purposes, are labor-intensive. Therefore, alternative techniques are needed, and a combination of the spectroscopic techniques—in this case, laser-induced breakdown spectroscopy (LIBS)—and visible near-infrared spectroscopy (vis-NIRS) could be relevant. We aimed at exploring LIBS, vis-NIRS and their combination for soil P estimation. We analyzed 147 Danish agricultural soils with LIBS and vis-NIRS. As reference measurements, we analyzed water-extractable P (Pwater), Olsen P (Polsen), oxalate-extractable P (Pox) and total P (TP) by conventional wet chemical protocols, as proxies for respectively leachable, plant-available, adsorbed inorganic P, and TP in soil. Partial least squares regression (PLSR) models combined with interval partial least squares (iPLS) and competitive adaptive reweighted sampling (CARS) variable selection methods were tested, and the relevant wavelengths for soil P determination were identified. LIBS exhibited better results compared to vis-NIRS for all P models, except for Pwater, for which results were comparable. Model performance for both the LIBS and vis-NIRS techniques as well as the combined LIBS-vis-NIR approach was significantly improved when variable selection was applied. CARS performed better than iPLS in almost all cases. Combined LIBS and vis-NIRS models with variable selection showed the best results for all four P pools, except for Pox where the results were comparable to using the LIBS model with CARS. Merging LIBS and vis-NIRS with variable selection showed potential for improving soil P determinations, but larger and independent validation datasets should be tested in future studies.


Soil Research ◽  
2014 ◽  
Vol 52 (3) ◽  
pp. 282 ◽  
Author(s):  
Jessica Coad ◽  
Lucy Burkitt ◽  
Warwick Dougherty ◽  
Leigh Sparrow

Many intensively managed soils contain phosphorus (P) concentrations greater than required for optimum production. Soils with P concentrations in excess of the agronomic optimum can have unnecessary losses of P that can adversely affect water bodies. Reducing excessive soil-P concentrations is important for the economic and environmental sustainability of intensive agriculture, such as the Australian dairy industry. However, little is known of decreases in extractable soil-P concentrations when P fertiliser applications are reduced or omitted from soils with P concentrations and properties representative of intensive pasture grazing systems. Decreases in extractable P (calcium chloride (CaCl2), Olsen and Colwell) were monitored for up to 4.5 years for six Australian grazed pasture soils (Red Ferrosol, Brown Kurosol, Grey Dermosol, Brown Dermosol, Podosol and Hydrosol) with contrasting textures and P-buffering indices (PBI). Sixteen treatments consisting of four initial extractable-P concentrations (Pinit) paired with four ongoing P fertiliser rates (Pfert) were established for each of the six soils, except on an extremely low-PBI Podosol, where a range of Pinit concentrations could not be established. The resultant decreases in P were larger with higher Pinit concentration and lower rate of ongoing Pfert, except in the extremely low PBI Podosol where decreases in initially high CaCl2-P concentrations were large irrespective of ongoing Pfert. There was a greater proportional decrease in the environmentally extractable P compared with agronomically extractable P, with mean decreases in CaCl2-P of 57%, Olsen-P of 25%, and Colwell-P of 12%. The Pinit concentrations, which were well above agronomic optimum, remained above this target. This study advances scientific knowledge of extractable soil-P concentrations when P fertiliser inputs are withheld or reduced from grazed pasture soils, and aids land and catchment managers in estimating likely changes over time.


Soil Research ◽  
2000 ◽  
Vol 38 (2) ◽  
pp. 411 ◽  
Author(s):  
Terrence A. Short ◽  
Neal W. Menzies ◽  
David R. Mulligan

The brown kandosol soils at Weipa, North Queensland, contain little soil phosphorus (P). Plant-available fractions (considered in this study to include resin, hydroxide, and dilute acid extractable P) approximate 85 ˜g P/g, or 70% of total soil P, the majority of which is in labile organic forms, highlighting the importance of P cycling within the native eucalypt forest. A field experiment was undertaken to evaluate the effect of soil handling during bauxite mining on the distribution of P between the various soil fractions. This study showed that soil stripping and replacement disrupts the P cycle and affects the proportional distribution of P between soil fractions. Horizon mixing during soil handling severely reduces the size of plant-available soil P fractions in surface soils ( 0–5 cm depth) and this can only be partially compensated by the addition of fertiliser. A survey of rehabilitated sites of differing ages showed that restoration of soil organic P fractions is extremely slow, with the overall distribution of P within replaced soils remaining different from that within undisturbed soils 15 years after rehabilitation to native forest or exotic pasture species.


1990 ◽  
Vol 30 (5) ◽  
pp. 661 ◽  
Author(s):  
DE Hibberd ◽  
JH Ladewig ◽  
MN Hunter ◽  
GW Blight

The poor growth of cotton in the Emerald Irrigation Area of central Queensland was investigated in fertiliser experiments from 1978 to 1980. The need for large amounts of phosphorus (P) and nitrogen (N) fertilisers was demonstrated. In a glasshouse nutrient-omission experiment, N, P, potassium, sulfur (S), zinc, copper, manganese, boron (B) and molybdenum were tested for effects on cotton growth on the soil surface fraction (low in P and S) of a black cracking clay at Emerald. Plant growth indicated that P, N and S were extremely deficient. Other nutrients, except B, were marginally deficient. Slow growth was reflected in low shoot concentrations of N, P and S. In subsequent field experiments at 5 sites on 3 different soils, yield responses were only obtained to applications of P and N. Phosphorus at a rate of 40 kg/ha was required on a shallow, basaltic, dark cracking clay (Bug) soil. Yield responses to P were not obtained on an alluvial, dark cracking clay (AUg) or on a deep, basaltic, dark cracking clay (TbUg), but soil P concentrations were generally higher at these sites. For high value cotton crops where soil P analyses are low (i.e. <12 mg/kg bicarbonate-extractable P at 0-10 cm), high P fertiliser rates are recommended to maintain the soil P status. Nitrogen at a rate of 120 kg/ha produced heaviest yields on the Bug soil, but there were symptoms of N deficiency in plants early in the season. Irrigation frequency treatments produced no significant differences in yield.


Soil Research ◽  
2020 ◽  
Vol 58 (2) ◽  
pp. 117 ◽  
Author(s):  
Musibau O. Azeez ◽  
Gitte Holton Rubæk ◽  
Ingeborg Frøsig Pedersen ◽  
Bent T. Christensen

Soil phosphorus (P) reserves, built up over decades of intensive agriculture, may account for most of the crop P uptake, provided adequate supply of other plant nutrients. Whether crops grown on soils with reduced supply of other nutrients obtain similar use-efficiency of soil P reserves remains unclear. In treatments of the Askov Long-Term Experiment (initiated in 1894 on light sandy loam), we quantified changes in soil total P and in plant-available P (Olsen P, water extractable P and P offtake in wheat grains) when P-depleted soil started receiving P in rock phosphate and when P application to soil with moderate P levels ceased during 1997–2017. Additionally we studied treatments with soil kept unfertilised for &gt;100 years and with soil first being P depleted and then exposed to surplus dressings of P, nitrogen (N) and potassium in cattle manure. For soil kept unfertilised for &gt;100 years, average grain P offtake was 6 kg ha–1 and Olsen P averaged 4.6 mg kg–1, representing the lower asymptotic level of plant-available P. Adding igneous rock phosphate to severely P-depleted soil with no N fertilisation had little effect on Olsen P, water extractable P (Pw), grain yields and P offtake. For soils with moderate levels of available P, withholding P application for 20 years reduced contents of Olsen P by 56% (from 16 to 7 mg P kg–1) and of Pw by 63% (from 4.5 to 1.7 mg P kg–1). However, the level of plant-available P was still above that of unfertilised soil. Application of animal manure to P-depleted soil gradually raised soil P availability, grain yield and P offtake, but it took 20 years to restore levels of plant-available P. Our study suggests symmetry between rates of depletion and accumulation of plant-available P in soil.


2018 ◽  
Vol 64 (No. 9) ◽  
pp. 441-447 ◽  
Author(s):  
Jarosch Klaus A ◽  
Santner Jakob ◽  
Parvage Mohammed Masud ◽  
Gerzabek Martin Hubert ◽  
Zehetner Franz ◽  
...  

Soil phosphorus (P) availability was assessed with four different soil P tests on seven soils of the Ultuna long-term field experiment (Sweden). These four soil P tests were (1) P-H<sub>2</sub>O (water extractable P); (2) P-H<sub>2</sub>O<sub>C10</sub> (water extractable P upon 10 consecutive extractions); (3) P-AL (ammonium lactate extractable P) and (4) P-C<sub>DGT</sub> (P desorbable using diffusive gradients in thin films). The suitability of these soil P tests to predict P availability was assessed by correlation with plant P uptake (mean of preceding 11 years) and soil P balancing (input vs. output on plot level for a period of 54 years). The ability to predict these parameters was in the order P-H<sub>2</sub>O<sub>C10</sub> &gt; P-C<sub>DGT</sub> &gt; P-H<sub>2</sub>O &gt; P-AL. Thus, methods considering the P-resupply from the soil solid phase to soil solution performed clearly better than equilibrium-based extractions. Our findings suggest that the P-AL test, commonly used for P-fertilizer recommendations in Sweden, could not predict plant P uptake and the soil P balance in a satisfying way in the analysed soils.


Sign in / Sign up

Export Citation Format

Share Document