Effects of sugar cane bagasse biochar and spent mushroom compost on phosphorus fractionation in calcareous soils

Soil Research ◽  
2018 ◽  
Vol 56 (2) ◽  
pp. 136 ◽  
Author(s):  
Arzhang Fathi Gerdelidani ◽  
Hossein Mirseyed Hosseini

In the present study we investigated the effects of using sugar cane bagasse biochar and spent mushroom compost (SMC) on different fractions of phosphorus and plant availability in three calcareous soils with a loam, clay loam and sandy loam texture. The incubation experiment was performed using a completely randomised design, with five treatments (B1 and B2 (15 and 30 t biochar ha–1 respectively), SMC1 and SMC2 (20 and 40 t SMC ha–1 respectively) and C (control)) and three incubation periods (14, 60 and 120 days) over three replicates. The different P fractions evaluated in the soil were Olsen P, dicalcium phosphate (Ca2-P), octacalcium phosphate (Ca8-P), aluminium phosphate (Al-P), iron phosphate, occluded phosphate and apatite. Application of SMC at both levels increased Olsen P, whereas biochar application was less effective. SMC2 increased Olsen P by 473%, 227% and 89% in clay loam, loam and sandy loam soils respectively. In addition, for all soils and all incubation times, SMC1 and SMC2 significantly increased Ca2-P compared with C, which had an increasing trend with time, but biochar only increased Ca2-P significantly in sandy loam soil. SMC2 also increased Ca8-P and Al-P at 120 days. In conclusion, application of SMC can enhance plant-available P and affect P fractions and distribution, with the degree of the increase being soil specific. In contrast, the effects of biochar on P availability, fractions and distribution need more time to become apparent.

Soil Research ◽  
2019 ◽  
Vol 57 (8) ◽  
pp. 814 ◽  
Author(s):  
Arkadiusz Telesiński ◽  
Teresa Krzyśko-Łupicka ◽  
Krystyna Cybulska ◽  
Barbara Pawłowska ◽  
Robert Biczak ◽  
...  

This study used laboratory experiments to compare the effects of coal tar creosote on the activity of oxidoreductive enzymes in sandy loam, loamy sand and sandy clay loam soils. Different amounts of coal tar creosote were added to soil samples as follows: 0 (control), 2, 10 or 50 g kg–1 dry matter. The activity of soil dehydrogenases (DHAs), o-diphenol oxidase (o-DPO), catalase (CAT), nitrate reductase (NR) and peroxidases (POX) was determined. Contamination of soil with coal tar creosote affected oxidoreductase activity. Oxidoreductive enzyme activity following soil contamination with coal tar creosote was in the following order: DHAs > CAT > NR > POX > o-DPO in loamy sand and in sandy loam; and DHAs > POX > CAT > NR > o-DPO in sandy clay loam. The index of soil oxidoreductive activity (IOx) introduced in this study confirms the negative effect of coal tar creosote on oxidoreductase activity in soil. DHAs were the most sensitive to the contamination of soil with coal tar creosote. Moreover, the greatest changes in oxidoreductase activities were observed in loamy sand. Knowledge of the mechanism underlying the effects of coal tar creosote on oxidoreductive processes may enable development of a method for the bioremediation of polycyclic aromatic hydrocarbon-contaminated soils.


2021 ◽  
Vol 11 (5) ◽  
pp. 2133
Author(s):  
Laura Landa-Ruiz ◽  
Miguel Angel Baltazar-Zamora ◽  
Juan Bosch ◽  
Jacob Ress ◽  
Griselda Santiago-Hurtado ◽  
...  

This research evaluates the behavior corrosion of galvanized steel (GS) and AISI 1018 carbon steel (CS) embedded in conventional concrete (CC) made with 100% CPC 30R and two binary sustainable concretes (BSC1 and BSC2) made with sugar cane bagasse ash (SCBA) and silica fume (SF), respectively, after 300 days of exposure to 3.5 wt.% MgSO4 solution as aggressive medium. Electrochemical techniques were applied to monitor corrosion potential (Ecorr) according to ASTM C-876-15 and linear polarization resistance (LPR) according to ASTM G59 for determining corrosion current density (icorr). Ecorr and icorr results indicate after more than 300 days of exposure to the sulfate environment (3.5 wt.% MgSO4 solution), that the CS specimens embedded in BSC1 and BSC2 presented greater protection against corrosion in 3.5 wt.% MgSO4 than the specimens embedded in CC. It was also shown that this protection against sulfates is significantly increased when using GS reinforcements. The results indicate a higher resistance to corrosion by exposure to 3.5 wt.% magnesium sulfate two times greater for BSC1 and BSC2 specimens reinforced with GS than the specimens embedding CS. In summary, the combination of binary sustainable concrete with galvanized steel improves durability and lifetime in service, in addition to reducing the environmental impact of the civil engineering structures.


2017 ◽  
Vol 64 (7) ◽  
pp. 930-938 ◽  
Author(s):  
J. D. Jabro ◽  
W.B. Stevens ◽  
W. M. Iversen

2005 ◽  
Vol 36 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Daniel Pasquini ◽  
Maria Teresa Borges Pimenta ◽  
Luiz Henrique Ferreira ◽  
Antonio Aprigio da Silva Curvelo

1986 ◽  
Vol 66 (1) ◽  
pp. 125-130 ◽  
Author(s):  
G. H. FRIESEN ◽  
D. A. WALL

McCall, Maple Presto, Maple Amber and OT80-3 soybean (Glycine max (L.) Merr.) cultivars were evaluated under field conditions for their response to metribuzin. Maple Amber was found to be less tolerant than the other cultivars. In controlled environment chamber studies, injury to this cultivar was more severe on a sandy loam soil than on a clay loam soil. Fall applications of metribuzin, alone or tank-mixed with trifluralin, were tolerant to Maple Amber soybeans and such applications may offer a practical alternative to spring treatments for broad spectrum weed control in the less tolerant soybean cultivars grown in Manitoba.Key words: Metribuzin, trifluralin, preplant incorporation, fall treatments, soybean cultivars


Sign in / Sign up

Export Citation Format

Share Document