The effect of soil conditioners on pore size distribution and water retention of a calcareous soil

Soil Research ◽  
1978 ◽  
Vol 16 (3) ◽  
pp. 277
Author(s):  
MH Khoury ◽  
AH Sayegh ◽  
NJ Atallah

The application of soil conditioners on a calcareous soil resulted in an increase in the diameter of pores and a decrease in the available water. A diameter of 140 �m was suggested to be the dividing point between micropores and very fine pores.

Author(s):  
Gabriele Della Vecchia ◽  
Anne-Catherine Dieudonné ◽  
Cristina Jommi ◽  
Robert Charlier

2013 ◽  
Vol 50 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Christopher T.S. Beckett ◽  
Charles E. Augarde

Several models have been suggested to link a soil's pore-size distribution to its retention properties. This paper presents a method that builds on previous techniques by incorporating porosity and particles of different sizes, shapes, and separation distances to predict soil water retention properties. Mechanisms are suggested for the determination of both the main drying and wetting paths, which incorporate an adsorbed water phase and retention hysteresis. Predicted results are then compared with measured retention data to validate the model and to provide a foundation for discussing the validity and limitations of using pore-size distributions to predict retention properties.


2019 ◽  
Vol 18 (1) ◽  
pp. 0 ◽  
Author(s):  
Mehdi Rahmati ◽  
Andreas Pohlmeier ◽  
Sara Mola Ali Abasiyan ◽  
Lutz Weihermüller ◽  
Harry Vereecken

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1113
Author(s):  
Stefan Julich ◽  
Janis Kreiselmeier ◽  
Simon Scheibler ◽  
Rainer Petzold ◽  
Kai Schwärzel ◽  
...  

Tree species, e.g., shallow vs. deep rooting tree species, have a distinct impact on hydrological properties and pore size distribution of soils. In our study, we determined the soil hydrologic properties and pore size distribution at three forest stands and one pasture as reference on soils with stagnant water conditions. All sites are located in the Wermsdorf Forest, where historical studies have demonstrated severe silvicultural problems associated with stagnant water in the soil. The studied stands represent different stages of forest management with a young 25-year-old oak (Sessile Oak (Quercus petraea) and Red oak (Q. robur)) plantation, a 170-year-old oak stand and a 95-year-old Norway Spruce (Picea abies) stand in second rotation. We determined the infiltration rates under saturated and near-saturated conditions with a hood-infiltrometer at the topsoil as well as the saturated hydraulic conductivity and water retention characteristic from undisturbed soil samples taken from the surface and 30 cm depth. We used the bi-modal Kosugi function to calculate the water retention characteristic and applied the normalized Young-Laplace equation to determine the pore size distribution of the soil samples. Our results show that the soils of the old stands have higher amounts of transmission pores, which lead to higher infiltration rates and conductance of water into the subsoil. Moreover, the air capacity under the old oak was highest at the surface and at 30 cm depth. There was also an observable difference between the spruce and oak regarding their contrasting root system architecture. Under the oak, higher hydraulic conductivities and air capacities were observed, which may indicate a higher and wider connected macropore system. Our results confirm other findings that higher infiltration rates due to higher abundance of macropores can be found in older forest stands. Our results also demonstrate that an adapted forest management is important, especially at sites affected by stagnant water conditions. However, more measurements are needed to expand the existing data base of soil hydraulic properties of forest soils in temperate climates.


2013 ◽  
Vol 27 (4) ◽  
pp. 439-444 ◽  
Author(s):  
J. Melke ◽  
B. Witkowska-Walczak ◽  
P. Bartmiński

Abstract The water retention characteristics of the arctic zone soils ((TurbicCryosol (Skeletic), TurbicCryosols (Siltic, Skeletic) and BrunicTurbicCryosol (Arenic)) derived in different micro-relief forms were determined. Water retention curves were similar in their course for the mud boils, cell forms, and sorted circles ie for TurbicCryosols. For these forms, the mud boils showed the highest water retention ability, whereas the sorted circles - the lowest one. Water retention curves for the tundra polygons (Brunic TurbicCryosol, Arenic) were substantially different from these mentioned above. The tundra polygons were characterized by the lowest bulk density of 1.26 g cm-3, whereas the sorted circles (TurbicCryosol, Skeletic) - the highest: 1.88 g cm-3. Total porosity was the highest for the tundra polygons (52.4 and 55.5%) and the lowest - for the sorted circles (28.8 and 26.2%). Pore size distribution of the investigated soils showed that independently of depths, the highest content of large and medium pores was noticed for the tundra polygons ie 21.2-24.2 and 19.9-18.7%, respectively. The lowest content of large pores was observed for the cell forms (6.4-5.9%) whereas the mud boils exhibited the lowest amount of medium sized pores (12.2-10.4%) (both TurbicCryosols Siltic, Skeletic). The highest content of small pores was detected in the mud boils - 20.4 and 19.0%.


Biologia ◽  
2015 ◽  
Vol 70 (11) ◽  
Author(s):  
Kálmán Rajkai ◽  
Brigitta Tóth ◽  
Gyöngyi Barna ◽  
Hilda Hernádi ◽  
Mihály Kocsis ◽  
...  

AbstractWater storage and flow in soils are highly dependent on soil structure, which strongly determines soil porosity. However pore size distribution can be derived from soil water retention curve (SWRC). Structural characteristics of cultivated arable fields (693 soil profiles, 1773 samples) and soils covered by treated forest stands (137 soil profiles, 405 samples) were selected from the MARTHA Hungarian soil physical database, and evaluated for expressing organic matter effects on soil structure and water retention. For this purpose the normalized pore size distribution curves were determined for the selected soils, plus the modal suction (MS) corresponding to the most frequent pore size class of the soil. Skewness of soils’ pore size distribution curves are found different. The quasi-normal distribution of sandy soils are transformed into distorted in clayey soils. A general growing trend of MS with the ever finer soil texture was shown. Sandy soils have the lowest average MS values, i.e. the highest most frequent equivalent pore diameter. Silty clay and clay soil textures are characterized by the highest MS values. A slight effect of land use and organic matter content is also observable in different MS values of soils under forest vegetation (’forest’) and cultivated arable land (‘plough fields’). MS values of the two land uses were compared statistically. The results of the analyses show that certain soil group’s MS are significantly different under forest vegetation and cultivation. However this difference can be explained only partly and indirectly by the organic matter of different plant coverage in the land use types.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 165 ◽  
Author(s):  
Sara de Jesus Duarte ◽  
Bruno Glaser ◽  
Carlos Pellegrino Cerri

The application of biochar is promising for improving the physical, chemical and hydrological properties of soil. However, there are few studies regarding the influence of biochar particle size. This study was conducted to evaluate the effect of biochar size on the physical, chemical and hydrological properties in sandy and loamy tropical soils. For this purpose, an incubation experiment was conducted in the laboratory with eight treatments (control (only soil), two soils (loamy and sandy soil), and three biochar sizes (<0.15 mm; 0.15–2 mm and >2 mm)). Analyses of water content, bulk density, total porosity, pore size distribution, total carbon (TC) and total N (TN) were performed after 1 year of soil–biochar-interactions in the laboratory. The smaller particle size <0.15 mm increased water retention in both soils, particularly in the loamy soil. Bulk density slightly decreased, especially in the loamy soil when biochar > 2 mm and in the sandy soil with the addition of 0.15–2 mm biochar. Porosity increased in both soils with the addition of biochar in the range of 0.15–2 mm. Smaller biochar particles shifted pore size distribution to increased macro and mesoporosity in both soils. Total carbon content increased mainly in sandy soil compared to control treatment; the highest carbon amount was obtained in the biochar size 0.15–2 mm in loamy soil and <0.15 mm in sandy soil, while the TN content and C:N ratio increased slightly with a reduction of the biochar particle size in both soils. These results demonstrate that biochar particle size is crucial for water retention, water availability, pore size distribution, and C sequestration.


Sign in / Sign up

Export Citation Format

Share Document