The formation of degraded areas in the dry savanna woodlands of northern Australia

Soil Research ◽  
1983 ◽  
Vol 21 (1) ◽  
pp. 91 ◽  
Author(s):  
NK Bridge ◽  
JJ Mott ◽  
RJ Hartigan

The perennial tall grass understory of a eucalypt woodland on a commonly occurring red earth (Northcote Principal Profile Form Gn2.11) in northern Australia was burnt during the dry season and subjected to weekly clipping during the following two wet seasons to simulate overgrazing. Clipping killed many plants during the first wet season and almost all of them during the second. Infiltration measurements showed that sorptivity and hydraulic conductivity were greatly reduced after the first wet season following burning only, and micromorphological examination showed surface sealing and structural collapse. There was recovery of sorptivity after the second wet season, but not of hydraulic conductivity, and this was accompanied by an increase in the macropore space of the upper 5 mm of surface soil. With burning plus clipping, structural rearrangement formed a vesicular porous layer during the second wet season and infiltration rates remained low. Since no organic carbon was lost from the surface soil following burning only, the structural collapse was attributed to raindrop impact rather than loss of structural bonds in the oil. In the burn+clip treatment, organic carbon was lost only during the second wet season when most of the grass tussocks had died. Respiration measurements showed that there was little difference in biological activity between the burnt and unburnt grassland during the first wet season and that an estimated 600 g m-2 year-1 of carbon was respired. Overgrazing pastures on these soils results in complete degradation within two set seasons and the formation of bare areas with surface seals.

Soil Research ◽  
1979 ◽  
Vol 17 (3) ◽  
pp. 483 ◽  
Author(s):  
J Mott ◽  
BJ Bridge ◽  
W Arndt

Stable bare degraded areas exist in the lightly grazed perennial grass understorey existing in the eucalypt woodlands of northern Australia. Examination of these areas showed large differences in infiltration which led to increased runoff from the bare sites. However, there was little difference in soil composition between grass-covered and degraded sites apart from a higher organic carbon content in surface soil under grass. Micromorphological examination showed that soil without grass cover had lost its original open structure in the surface layers, developing a surface seal. The surface soil of the bare sealed area was shown to slake readily under quick wetting in contrast to soil surface under grass cover which did not slake. Heavy grazing of the grass understorey destroyed grass clumps within two wet seasons. Once the clumps were killed the soil surface quickly collapsed to form sealed areas, with the same properties as those occurring in ungrazed sites. The persistence of the bare sealed areas is attributed to seed removal during runoff, high temperatures and low moisture content in the sealed layer, as well as mechanical impedance preventing seedling emergence. As re-establishment of native grasses is difficult in this region, care must be taken in pastoral management to prevent the formation of degraded sites, which may take many years to re-vegetate.


Soil Research ◽  
1983 ◽  
Vol 21 (1) ◽  
pp. 83 ◽  
Author(s):  
BJ Bridge ◽  
JJ Mott ◽  
WH Winter ◽  
RJ Hartigan

The structure of the surface soil under pastures sown on a former Themada australis native grassland and on degraded areas in the red earths of northern Australia was examined micromorphologically. Heavily grazed pastures containing the legumes Stylosanthes hamata cv. Verano and Alysicarpus vaginalis had more macropore space in the surface soil than arlightly grazed native grassland, while pastures containing S. humilis (Townsville stylo) had as little macropore space as degraded areas. Macropore space in a S. hamata pasture increased between the third and fourth wet seasons after establishment. Where macropore space was high, infiltration measurements showed that sorptivities were as high as those in the native grassland. Where macropore space was low, sorptivities were as low as those in degraded areas. However, all sown pastures showed low hydraulic conductivities equivalent to those in the degraded areas, and this was attributed to trampling during the wet season under the higher stocking rates involved. The improvement and maintenance of soil structure in the S. hamata and A. vaginalis pastures, together with their high sorptivities, indicates that they are stable in the long term.


1991 ◽  
Vol 18 (3) ◽  
pp. 343 ◽  
Author(s):  
SK Churchill

Temperature and humidity were recorded from roost sites used by nine species of cave bats in northern Australia. The 10 sites containing R. aurantius exhibited the narrowest range of roost conditions of any species, this species having a strong preference for hot and humid roosts (28-32�C and 85-100% RH). R. aurantius colony sizes ranged from 20 to 25 000, and varied seasonally, almost all colonies abandoning their cave roosts during the wet season. Colony size was strongly related to mean minimum monthly temperature and rainfall, populations being greatest during the coolest and driest period of the year. Other sympatric species also exhibited preferences for specific roost conditions, indicating interspecific partitioning of roost resources. Species that utilised a broad range of roost humidity occupied a larger geographic range than those with more specific requirements.


2004 ◽  
Vol 52 (3) ◽  
pp. 303 ◽  
Author(s):  
L. D. Prior ◽  
D. Eamus ◽  
D. M. J. S. Bowman

We demonstrate a significant relationship between leaf attributes and growth rates of mature trees under natural conditions in northern Australia, a pattern that has not been widely reported before in the literature. Increase in diameter at breast height (DBH) was measured every 3 months for 2 years for 21 tree species from four habitats near Darwin: Eucalyptus open forest, mixed eucalypt woodland, Melaleuca swamp and dry monsoon rainforest. Assimilation rates and foliar chlorophyll, nitrogen and phosphorus concentrations were positively correlated with growth rate and negatively correlated with leaf mass per area. For most species, increases in DBH were confined to the wet-season (summer) period between November and May. Average annual increases in DBH were larger in the dry monsoon rainforest (0.87 cm) and the Melaleuca swamp (0.65 cm) than in the woodland (0.20 cm) and the open forest (0.16 cm), and were larger in non-Myrtaceous species (0.53 cm) than in Myrtaceous species (0.25 cm). These results are discussed in relation to the frequent fire regime prevailing over much of northern Australia which causes the marked contrast between the small pockets of fire-tender closed monsoon rainforest and large expanses of fire-tolerant savanna.


2019 ◽  
Vol 29 (2) ◽  
Author(s):  
Miroslav Josipovic ◽  
Catherine Leal-Liousse ◽  
Belinda Crobeddu ◽  
Armelle Baeza-Squiban ◽  
C. Keitumetse Segakweng ◽  
...  

This study aimed to characterise aerosols sampled in the vicinity of a major industrialised area, i.e. the Vaal Triangle. It included thedetermination of oxidative potential as a predictive indicator of particle toxicity. Aerosol samples were collated through the cascadefiltering during an eight-month period (12 h over three days in one week). Three size fractions were analysed for organic carbon(OC), black carbon (BC) and oxidative potential (OP), while ionic content was presented as monthly and seasonal concentrations. Thecontinuous measurement of black carbon by an optical attenuation instrument was collated concurrently with cascade filtering. Thecarbonaceous content was low compared to the ionic one. Within the carbonaceous concentrations, the organic carbon was higherthan concentrations of black carbon in both seasons in the ultra-fine fraction; the opposite was the case for the fine fraction, whilethe coarse fraction concentrations of organic carbon in the dry season had higher concentrations than black carbon in the wet seasonand organic carbon in the wet season. The OP tended to increase as the size was decreasing for wet season aerosols, whereas, forthe dry season, the highest OP was exerted by the fine fraction. The ultrafine fraction was the one showing the most contrasting OPbetween the two seasons. Continuous monitoring indicated that the higher BC concentrations were recorded in the dry/winter partof the year, with the daily pattern of concentrations being typically bimodal, having both the morning and evening peaks in bothseasons. Within the ionic content, the dominance of sulphate, nitrate and ammonium was evident. Multiple linear correlations wereperformed between all determined compounds. Strong correlations of carboxylic acids with other organic compounds were revealed.These acids point to emissions of VOC, both anthropogenic and biogenic. Since they were equally present in both seasons, a mixtureof sources was responsible, both present in the wider area and throughout the year.


2020 ◽  
Vol 60 (5) ◽  
pp. 683
Author(s):  
M. K. Bowen ◽  
F. Chudleigh ◽  
R. M. Dixon ◽  
M. T. Sullivan ◽  
T. Schatz ◽  
...  

Context Phosphorus (P) deficiency occurs in beef cattle grazing many rangeland regions with low-P soils, including in northern Australia, and may severely reduce cattle productivity in terms of growth, reproductive efficiency and mortality. However, adoption of effective P supplementation by cattle producers in northern Australia is low. This is likely to be due to lack of information and understanding of the profitability of P supplementation where cattle are P-deficient. Aims The profitability of P supplementation was evaluated for two dissimilar regions of northern Australia, namely (1) the Katherine region of the Northern Territory, and (2) the Fitzroy Natural Resource Management (NRM) region of central Queensland. Methods Property-level, regionally relevant herd models were used to determine whole-of-business productivity and profitability over 30 years. The estimated costs and benefits of P supplementation were obtained from collation of experimental data and expert opinion of persons with extensive experience of the industry. The economic consequences of P supplementation at the property level were assessed by comparison of base production without P supplementation with the expected production of P-supplemented herds, and included the implementation phase and changes over time in herd structure. In the Katherine region, it was assumed that the entire cattle herd (breeders and growing cattle) grazed acutely P-deficient land types and the consequences of (1) no P supplementation, or P supplementation during (2) the dry season, or (3) both the wet and dry seasons (i.e. 3 scenarios) were evaluated. In the Fitzroy NRM region, it was assumed that only the breeders grazed P-deficient land types with three categories of P deficiency (marginal, deficient and acutely deficient), each with either (1) no P supplementation, or P supplementation during (2) the wet season, (3) the dry season, or (4) both the wet and dry seasons (i.e. 12 scenarios). Key results In the Katherine region, year-round P supplementation of the entire cattle herd (7400 adult equivalents) grazing acutely P-deficient pasture resulted in a large increase in annual business profit (+AU$500000). Supplementing with P (and N) only in the dry season increased annual business profit by +AU$200000. In the Fitzroy NRM region, P supplementation during any season of the breeder herd grazing deficient or acutely P-deficient pastures increased profit by +AU$2400–AU$45000/annum (total cattle herd 1500 adult equivalents). Importantly, P supplementation during the wet season-only resulted in the greatest increases in profit within each category of P deficiency, comprising +AU$5600, AU$6300 and AU$45000 additional profit per annum for marginal, deficient and acutely P-deficient herds respectively. Conclusions The large economic benefits of P supplementation for northern beef enterprises estimated in the present study substantiate the current industry recommendation that effective P supplementation is highly profitable when cattle are grazing P-deficient land types. Implications The contradiction of large economic benefits of P supplementation and the generally low adoption rates by the cattle industry in northern Australia suggests a need for targeted research and extension to identify the specific constraints to adoption, including potential high initial capital costs.


limited data for the greater Townsville area (Kay et al.1996). Based on the prevalence of key vector species and their abundance and that of the viruses recovered, it was concluded that Big Bay, originally recommended as a prime site for recreational development by the Department of Local Government in 1985, actually presented lower risk than any other locality. Antill Creek also proved relatively safe in terms of mosquito-borne infections, whereas Toonpan during the wet season was a place to be avoided. Both Ross River and the environs of Townsville offered intermediate risk, the latter due to large numbers of saltmarsh mosquitoes breeding in intertidal wetlands. 9.5 Snails and swimmer’s itch Schistosome dermatitis, known as swimmer’s itch, is a common global problem for users of recreational swimming areas in water resource developments. The rash is caused by free living larvae called cercariae (Figure 9.4) of parasitic flukes which burrow into exposed parts of the body. Normally the life-cycle involves water birds such as ducks and pulmonate snails, so infection of humans is accidental. A large number of cercariae may penetrate the skin where they die but cause a localized allergic reaction in sensitized persons. In northern Australia, swimmer’s itch (Trichobilharzia) has been traditionally associated with Austropeplea (= Lymnaea) lessoni (= vinosa) although two planorbid snails, Amerianna carinata and Gyraulus stabilis, have also been identified as intermediate hosts in Lake Moondarra near Mt Isa, Queensland. Our recent data implicates Gyraulus gilberti at the Ross River dam. Snails are also commonly infected with other trematode cercariae, mainly echinostomes, strigeids/diplostomids and clinostomids.

1998 ◽  
pp. 148-148

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1031 ◽  
Author(s):  
Stefan Kalev ◽  
Gurpal S. Toor

Urban landscapes are significant contributors of organic carbon (OC) in receiving waters, where elevated levels of OC limit the light availability, increase the transport of pollutants, and result in high costs of potable water treatment. Our objective in this study was to investigate the concentrations, fractions (dissolved and particulate), and loads of OC in a residential catchment (3.89 ha drainage area) located in Florida, United States. The outlet of the stormwater pipe draining the residential catchment was instrumented with an automated sampler, a flowmeter, and a rain gauge. The rainfall and runoff samples collected over 25 storm events during the 2016 wet season (June to September) were analyzed for dissolved organic carbon (DOC) and total organic carbon (TOC), with particulate OC (POC) calculated as the difference between TOC and DOC. Mean concentration of DOC was 2.3 ± 1.7 mg L−1 and POC was 0.3 ± 0.3 mg L−1 in the rainfall, whereas DOC was 10.5 ± 6.20 mg L−1 and POC was 2.00 ± 4.05 mg L−1 in the stormwater runoff. Concentrations of DOC were higher during the rising limb of the hydrograph in 15 out of 25 storm events, suggesting flushing of DOC, with an increase in the amount of runoff, from the landscape sources in the residential catchment. The estimated total export of OC during the 2016 wet season was 66.0 kg ha−1, of which DOC was 56.9 kg ha−1 (86.2% of TOC), and POC was 9.1 kg ha−1 (13.8% of TOC). High concentrations and loads of OC, especially DOC, in the stormwater runoff imply that residential catchments in urban watersheds are hot-spots of DOC influx to water bodies. Reducing DOC transport in the urban landscapes is complex and require identifying the origin of DOC and then using site-specific targeted approaches to mitigate DOC loss.


Sign in / Sign up

Export Citation Format

Share Document