Fire experiments in northern Australia: contributions to ecological understanding and biodiversity conservation in tropical savannas

2003 ◽  
Vol 12 (4) ◽  
pp. 391 ◽  
Author(s):  
R. J. Williams ◽  
J. C. Z. Woinarski ◽  
A. N. Andersen

The management of fire in savannas has been informed by a strong tradition of fire experiments, especially in Africa. This research tradition is much shorter in the 2 million square kilometres of tropical savannas in northern Australia, but has yielded several natural experiments, and three designed, manipulative, controlled field experiments (hereafter 'manipulative' experiments) of international significance (at Munmarlary, Kapalga and Kidman Springs in the Northern Territory). Here we assess the contributions of experiments, in particular the manipulative experiments, to ecological understanding and biodiversity management in Australia's savannas. Running from 1973 to 1996, the Munmarlary experiment comprised hectare-scale experimental plots with four replicated dry season fire treatments, and was designed to examine interactions between fire, landscape and biodiversity. The Kapalga experiment ran from 1989 to 1995, with a range of fire treatments broadly similar to those at Munmarlary. However, experimental units were 10–20�km2 sub-catchments, making it one of the largest, replicated fire experiments ever conducted. The Kidman Springs experiment focused on grass-layer productivity and composition to meet the needs of the pastoral industry, but also provided an opportunity to examine biodiversity responses to different fire regimes. Methodologically, the experiments have generally focused on phenomena—the responses to different fire treatments of individual taxa—rather than on mechanisms that determine response syndromes. They have highlighted that a range of responses to differences in fire regime is possible, and that no single fire regime can optimise all biodiversity outcomes. For effective conservation of biodiversity in the face of such complexity, conservation goals will need to be made explicit. The existing portfolio of manipulative experiments is incomplete, lacking especially a consideration of some critical savanna taxa and environments, and providing little information on the significance of spatial and temporal variability in fire patterns, especially at small scales. An understanding of fire in Australian savanna landscapes remains inadequate, so there is a continuing need for close partnerships between scientists and conservation managers, with fire management treated as a series of landscape experiments in an adaptive management framework.


2008 ◽  
Vol 35 (1) ◽  
pp. 33 ◽  
Author(s):  
Sarah Legge ◽  
Stephen Murphy ◽  
Joanne Heathcote ◽  
Emma Flaxman ◽  
John Augusteyn ◽  
...  

We report the effects of an extensive (>7000 km2), high-intensity late-dry-season fire in the central Kimberley, Western Australia, on the species richness and abundance of mammals, reptiles and birds. Five weeks after the fire we surveyed 12 sites (six burnt, six unburnt); each pair of sites was closely matched for soil type and vegetation. The species richness and abundance of mammals and reptiles was greater at unburnt sites, especially for mammals (with a 4-fold difference in abundance between burnt and unburnt sites). There was an indication that reptiles immigrated into unburnt patches, but mammals did not. There were also species-specific responses to the fire: Rattus tunneyi and Pseudomys nanus were much more abundant in unburnt sites, whereas Pseudomys delicatulus was caught in equal numbers at burnt and unburnt sites. Diurnal reptiles were more abundant at unburnt sites, but nocturnal reptiles were equally common at burnt and unburnt sites. Avian species richness and overall abundance was similar between burnt and unburnt patches, although a few species showed preferences for one state or the other. The overall high trapping success for mammals (18% across all sites; 28% in unburnt patches) contrasts with the well documented mammal collapse in parts of northern Australia and seems paradoxical given that our study area has experienced the same increase in fire frequency and extent that is often blamed for species collapse. However, our study area has fewer pressures from other sources, including grazing by large herbivores, suggesting that the effects of these pressures, and their interaction with fire, may have been underestimated in previous studies.



2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.



2003 ◽  
Vol 12 (4) ◽  
pp. 349 ◽  
Author(s):  
Cameron Yates ◽  
Jeremy Russell-Smith

The fire-prone savannas of northern Australia comprise a matrix of mostly fire-resilient vegetation types, with embedded fire-sensitive species and communities particularly in rugged sandstone habitats. This paper addresses the assessment of fire-sensitivity at the landscape scale, drawing on detailed fire history and vegetation data assembled for one large property of 9100�km2, Bradshaw Station in the Top End of the Northern Territory, Australia. We describe (1) the contemporary fire regime for Bradshaw Station for a 10 year period; (2) the distribution and status of 'fire sensitive' vegetation; and (3) an assessment of fire-sensitivity at the landscape scale. Fire-sensitive species (FSS) were defined as obligate seeder species with minimum maturation periods of at least 3 years. The recent fire history for Bradshaw Station was derived from the interpretation of fine resolution Landsat MSS and Landsat TM imagery, supplemented with mapping from coarse resolution NOAA-AVHRR imagery where cloud had obstructed the use of Landsat images late in the fire season (typically October–November). Validation assessments of fire mapping accuracy were conducted in 1998 and 1999. On average 40% of Bradshaw burnt annually with about half of this, 22%, occurring after August (Late Dry Season LDS), and 65% of the property burnt 4 or more times, over the 10 year period; 89% of Bradshaw Station had a minimum fire return interval of less than 3 years in the study period. The derived fire seasonality, frequency and return interval data were assessed with respect to landscape units (landsystems). The largest landsystem, Pinkerton (51%, mostly sandstone) was burnt 41% on average, with about 70% burnt four times or more, over the 10 year period. Assessment of the fire-sensitivity of individual species was undertaken with reference to data assembled for 345 vegetation plots, herbarium records, and an aerial survey of the distribution of the long-lived obligate-seeder tree species Callitris intratropica. A unique list of 1310 plant species was attributed with regenerative characteristics (i.e. habit, perenniality, resprouting capability, time to seed maturation). The great majority of FSS species were restricted to rugged sandstone landforms. The approach has wider application for assessing landscape fire-sensitivity and associated landscape health in savanna landscapes in northern Australia, and elsewhere.



2009 ◽  
Vol 18 (2) ◽  
pp. 127 ◽  
Author(s):  
Andrew C. Edwards ◽  
Jeremy Russell-Smith

The paper examines the application of the ecological thresholds concept to fire management issues concerning fire-sensitive vegetation types associated with the remote, biodiversity-rich, sandstone Arnhem Plateau, in western Arnhem Land, monsoonal northern Australia. In the absence of detailed assessments of fire regime impacts on component biota such as exist for adjoining Nitmiluk and World Heritage Kakadu National Parks, the paper builds on validated 16-year fire history and vegetation structural mapping products derived principally from Landsat-scale imagery, to apply critical ecological thresholds criteria as defined by fire regime parameters for assessing the status of fire-sensitive habitat and species elements. Assembled data indicate that the 24 000 km2 study region today experiences fire regimes characterised generally by high annual frequencies (mean = 36.6%) of large (>10 km2) fires that occur mostly in the late dry season under severe fire-weather conditions. Collectively, such conditions substantially exceed defined ecological thresholds for significant proportions of fire-sensitive indicator rain forest and heath vegetation types, and the long-lived obligate seeder conifer tree species, Callitris intratropica. Thresholds criteria are recognised as an effective tool for informing ecological fire management in a variety of geographic settings.



2010 ◽  
Vol 58 (4) ◽  
pp. 300 ◽  
Author(s):  
Jeremy Russell-Smith ◽  
Cameron P. Yates ◽  
Chris Brock ◽  
Vanessa C. Westcott

Few data are available concerning contemporary fire regimes and the responses of fire interval-sensitive vegetation types in semiarid woodland savanna landscapes of northern Australia. For a 10 300 km2 semiarid portion of Gregory National Park, in the present paper we describe (1) components of the contemporary fire regime for 1998–2008, on the basis of assessments derived from Landsat and MODIS imagery, (2) for the same period, the population dynamics, and characteristic fine-fuel loads associated with Acacia shirleyi Maiden (lancewood), an obligate seeder tree species occurring in dense monodominant stands, and (3) the fire responses of woody species, and fine-fuel dynamics, sampled in 41 plots comprising shrubby open-woodland over spinifex hummock grassland. While rain-year (July–June) rainfall was consistently reliable over the study period, annual fire extent fluctuated markedly, with an average of 29% being fire affected, mostly in the latter part of the year under relatively harsh fire-climate conditions. Collectively, such conditions facilitated short fire-return intervals, with 30% of the study area experiencing a repeat fire within 1 year, and 80% experiencing a repeat fire within 3 years. Fine fuels associated with the interior of lancewood thickets were characteristically small (<1 t ha–1). Fine fuels dominated by spinifex (Triodia spp.) were found to accumulate at rates equivalent to those observed under higher-rainfall conditions. Stand boundaries of A. shirleyi faired poorly under prevailing fire regimes over the study period; in 16 plots, juvenile density declined 62%, and adult stem density and basal area declined by 53% and 40%, respectively. Although the maturation (primary juvenile) period of A. shirleyi is incompletely known, assembled growth rate and phenology data indicated that it is typically >10 years. Of 133 woody species sampled, all trees (n = 26), with the exception of A. shirleyi, were resprouters, and 58% of all shrub species (n = 105) were obligate seeders, with observed primary juvenile periods <5 years. Assembled data generally supported observations made from other northern Australian studies concerning the responses of fire-sensitive woody taxa in rugged, sandstone-derived landscapes, and illustrated the enormous challenges facing ecologically sustainable fire management in such settings. Contemporary fire regimes of Gregory National Park are not ecologically sustainable.



2019 ◽  
pp. 31
Author(s):  
Catarina Romão Sequeira ◽  
Cristina Montiel-Molina ◽  
Francisco Castro Rego

The Iberian Peninsula has a long history of fire, as the Central Mountain System, from the Estrela massif in Portugal to the Ayllón massif in Spain, is a major fire-prone area. Despite being part of the same natural region, there are different environmental, political and socio-economic contexts at either end, which might have led to distinct human causes of wildfires and associated fire regimes. The hypothesis for this research lies in the historical long-term relationship between wildfire risks and fire use practices within a context of landscape dynamics. In addition to conducting an analysis of the statistical period, a spatial and temporal multiscale approach was taken by reconstructing the historical record of prestatistical fires and land management history at both ends of the Central Mountain System. The main result is the different structural causes of wildland fires at either end of the Central Mountain System, with human factors being more important than environmental factors in determining the fire regimes in both contexts. The study shows that the development of the fire regime was non-linear in the nineteenth and twentieth centuries, due to broader local human context factors which led to a shift in fire-use practices.



2020 ◽  
Vol 29 (7) ◽  
pp. 595 ◽  
Author(s):  
Alexandra D. Syphard ◽  
Jon E. Keeley

The fire regime is a central framing concept in wildfire science and ecology and describes how a range of wildfire characteristics vary geographically over time. Understanding and mapping fire regimes is important for guiding appropriate management and risk reduction strategies and for informing research on drivers of global change and altered fire patterns. Most efforts to spatially delineate fire regimes have been conducted by identifying natural groupings of fire parameters based on available historical fire data. This can result in classes with similar fire characteristics but wide differences in ecosystem types. We took a different approach and defined fire regime ecoregions for California to better align with ecosystem types, without using fire as part of the definition. We used an unsupervised classification algorithm to segregate the state into spatial clusters based on distinctive biophysical and anthropogenic attributes that drive fire regimes – and then used historical fire data to evaluate the ecoregions. The fire regime ecoregion map corresponded well with the major land cover types of the state and provided clear separation of historical patterns in fire frequency and size, with lower variability in fire severity. This methodology could be used for mapping fire regimes in other regions with limited historical fire data or forecasting future fire regimes based on expected changes in biophysical characteristics.



Author(s):  
Sandra Halperin ◽  
Oliver Heath

This chapter explores the principles of experimental research design as well as the issues and problems associated with different aspects of the approach. In particular, it considers the issue of internal and external validity, the common obstacles associated with experimental research, and what can be done to try and avoid or minimize them. The chapter first describes the five steps involved in the classic version of the experimental design before discussing three types of experimental design: laboratory experiments, field experiments, and natural experiments. It also examines the ethical issues that arise from experimental research and concludes by highlighting some of the advantages of experimental research.



2009 ◽  
Vol 6 (3) ◽  
pp. 349-360 ◽  
Author(s):  
V. Lehsten ◽  
K. Tansey ◽  
H. Balzter ◽  
K. Thonicke ◽  
A. Spessa ◽  
...  

Abstract. We developed a technique for studying seasonal and interannual variation in pyrogenic carbon emissions from Africa using a modelling approach that scales burned area estimates from L3JRC, a map recently generated from remote sensing of burn scars instead of active fires. Carbon fluxes were calculated by the novel fire model SPITFIRE embedded within the dynamic vegetation model framework LPJ-GUESS, using daily climate input. For the time period from 2001 to 2005 an average area of 195.5±24×104 km2 was burned annually, releasing an average of 723±70 Tg C to the atmosphere; these estimates for the biomass burned are within the range of previously published estimates. Despite the fact that the majority of wildfires are ignited by humans, strong relationships between climatic conditions (particularly precipitation), net primary productivity and overall biomass burnt emerged. Our investigation of the relationships between burnt area and carbon emissions and their potential drivers available litter and precipitation revealed uni-modal responses to annual precipitation, with a maximum around 1000 mm for burned area and emissions, or 1200 mm for litter availability. Similar response patterns identified in savannahs worldwide point to precipitation as a chief determinant for short-term variation in fire regime. A considerable variability that cannot be explained by fire-precipitation relationships alone indicates the existence of additional factors that must be taken into account.



Fire Ecology ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 10-31 ◽  
Author(s):  
Sofia L. J. Oliveira ◽  
Manuel L. Campagnolo ◽  
Owen F. Price ◽  
Andrew C. Edwards ◽  
Jeremy Russell-Smith ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document