Relationships between prescribed burning and wildfire occurrence and intensity in pine - hardwood forests in north Mississippi, USA

2006 ◽  
Vol 15 (2) ◽  
pp. 203 ◽  
Author(s):  
Stephen Brewer ◽  
Corey Rogers

Using Geographic Information Systems and US Forest Service data, we examined relationships between prescribed burning (from 1979 to 2000) and the incidence, size, and intensity of wildfires (from 1995 to 2000) in a landscape containing formerly fire-suppressed, closed-canopy hardwood and pine–hardwood forests. Results of hazard (failure) analyses did not show an increased likelihood of large, small, or intense wildfires with an increase in the number of years since the last prescribed fire. Wildfires of various sizes and intensities were more likely to occur in years with lower than average precipitation, regardless of when these areas were last burned. Calculations of expected lightning-fire potential based on weather patterns predicted a peak in lightning-started fires in the early to late summer. Lightning fires were rare, however, and wildfire activity was greatest in the spring and fall. We hypothesize that the ineffectiveness of prescribed burning in reducing wildfire hazard and the low incidence of wildfires in the midsummer in north Mississippi are both artifacts of fire suppression in the past, which converted open oak–pine woodlands with persistent pyrogenic surface fuels that accumulated over time to closed-canopy forests that lack such fuels. We suggest that open canopies and grass-based surface fuels must first be restored before prescribed burning will achieve most desirable management goals in this region, including hazard reduction and ecological restoration of natural fire regimes.

2019 ◽  
Vol 139 (3) ◽  
pp. 393-406
Author(s):  
Sarah Cogos ◽  
Samuel Roturier ◽  
Lars Östlund

AbstractIn Sweden, prescribed burning was trialed as early as the 1890s for forest regeneration purposes. However, the origins of prescribed burning in Sweden are commonly attributed to Joel Efraim Wretlind, forest manager in the State Forest district of Malå, Västerbotten County, from 1920 to 1952. To more fully understand the role he played in the development of prescribed burning and the extent of his burning, we examined historical records from the State Forest Company’s archive and Wretlind’s personal archive. The data showed that at least 11,208 ha was burned through prescribed burning between 1921 and 1970, representing 18.7% of the Malå state-owned forest area. Wretlind thus created a new forestry-driven fire regime, reaching, during peak years, extents close to historical fire regimes before the fire suppression era, and much higher than present-day burning. His use of prescribed fire to regenerate forests served as a guide for many other forest managers, spreading to all of northern Sweden during the 1950–1960s. Our analysis of Wretlind’s latest accounts also shows how he stood against the evolutions of modern forestry to defend a forestry system based on the reproduction of natural processes, such as fire.


Author(s):  
J A Alexander ◽  
W H Fick ◽  
S B Ogden ◽  
D A Haukos ◽  
J Lemmon ◽  
...  

Abstract The predominant grazing management practice of the Kansas Flint Hills involves annual prescribed burning in March or April with post-fire grazing by yearling beef cattle at a high stocking density from April to August. There has been a dramatic increase in sericea lespedeza (Lespedeza cuneata [Dumont] G. Don) coincident with this temporally-focused use of prescribed fire in the Flint Hills region. The species is an aggressive invader and a statewide noxious weed in Kansas. Control has generally been attempted using repeated herbicide applications. This approach has not limited proliferation of sericea lespedeza and resulted in collateral damage to non-target flora and fauna. Alternative timing of prescribed fire has not been evaluated for its control. Our objectives for this 4-yr experiment were to (1) document the effects of prescribed burning during early April, early August, or early September on vigor of sericea lespedeza, standing forage biomass, and basal cover of native graminoids, forbs, and shrubs and (2) measure responses to fire regimes by grassland bird and butterfly communities. Whole-plant dry mass, basal cover, and seed production of sericea lespedeza were markedly less (P < 0.01) in areas treated with prescribed fire in August or September compared with April. Forage biomass did not differ (P ≥ 0.43) among treatments when measured during July; moreover, frequencies of bare soil, litter, and total basal plant cover were not different (P ≥ 0.29) among treatments. Combined basal covers of C4 grasses, C3 grasses, annual grasses, forbs, and shrubs also did not differ (P ≥ 0.11) between treatments. Densities of grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), and eastern meadowlark (Sturnella magna) were not negatively affected (P > 0.10) by mid-summer or late-summer fires relative to early-spring fires. There were no differences (P > 0.10) in densities of grassland-specialist butterfly species across fire regimes. Under the conditions of our experiment, prescribed burning during summer produced no detrimental effects on forage production, desirable non-target plant species, grassland birds, or butterfly communities but had strong suppressive effects on sericea lespedeza. Additional research is warranted to investigate how to best incorporate late-summer prescribed fire into common grazing-management practices in the Kansas Flint Hills.


2008 ◽  
Vol 17 (6) ◽  
pp. 688 ◽  
Author(s):  
A. Malcolm Gill ◽  
Grant Allan

‘Large’ fires may be declared so because of their absolute or relative area. Huge fires – with areas of more than 106 ha (104 km2) have occurred across a wide spectrum of Australian environments and are known on other continents. Such large fires are rare whereas fires with much smaller areas are common. Large fires are initiated by single or multiple ignitions and become large because of some combination of: rapid rates of spread; long ‘life’; merging, and failure of initial suppression operations. Fires as ecological ‘events’ occur within a ‘regime’ – an historical series. Both events and regimes have effects that may be discerned in terms of water, land, air or organisms. What have been regarded as the components of ‘regimes’ have differed between observers, the main issue being whether or not spatial variables need to be included; ‘area’ involvement is briefly addressed. The current trend toward fire-regime control through fuel treatment, including management (prescribed) burning, and fire suppression may be expected to continue. These trends, among others, can be expected to change fire regimes. What is regarded as ‘large’ among fires may change as the planet becomes increasingly human-dominated.


2010 ◽  
Vol 1 (2) ◽  
pp. 64-72 ◽  
Author(s):  
Christopher E. Shaw ◽  
Craig A. Harper ◽  
Michael W. Black ◽  
Allan E. Houston

Abstract Forage production for white-tailed deer Odocoileus virginianus is often limited in closed-canopy forests. We measured browse production and nutritional carrying capacity after prescribed burning and understory fertilization in closed-canopy hardwood stands one growing season after treatment in two physiographic regions of Tennessee. Nutritional carrying capacity estimates for prescribed burning, fertilization, and prescribed burning with fertilization were greater than in controls on the Cumberland Plateau. However, the cost per pound of forage produced after fertilization exceeded US$26. In the Coastal Plain, fertilization did not affect nutritional carrying capacity, and prescribed burning and prescribed burning with fertilization lowered nutritional carrying capacity from controls. At both sites, prescribed fire had minimal effect on soil pH or soil phosphate and potash levels. Our results suggest prescribed fire and fertilization are of limited utility for increasing browse production in closed-canopy hardwood forests.


Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 37
Author(s):  
Tony Marks-Block ◽  
William Tripp

Prescribed burning by Indigenous people was once ubiquitous throughout California. Settler colonialism brought immense investments in fire suppression by the United States Forest Service and the California Department of Forestry and Fire Prevention (CAL FIRE) to protect timber and structures, effectively limiting prescribed burning in California. Despite this, fire-dependent American Indian communities such as the Karuk and Yurok peoples, stalwartly advocate for expanding prescribed burning as a part of their efforts to revitalize their culture and sovereignty. To examine the political ecology of prescribed burning in Northern California, we coupled participant observation of prescribed burning in Karuk and Yurok territories (2015–2019) with 75 surveys and 18 interviews with Indigenous and non-Indigenous fire managers to identify political structures and material conditions that facilitate and constrain prescribed fire expansion. Managers report that interagency partnerships have provided supplemental funding and personnel to enable burning, and that decentralized prescribed burn associations facilitate prescribed fire. However, land dispossession and centralized state regulations undermine Indigenous and local fire governance. Excessive investment in suppression and the underfunding of prescribed fire produces a scarcity of personnel to implement and plan burns. Where Tribes and local communities have established burning infrastructure, authorities should consider the devolution of decision-making and land repatriation to accelerate prescribed fire expansion.


2014 ◽  
Vol 23 (3) ◽  
pp. 373 ◽  
Author(s):  
Eva Marino ◽  
Carmen Hernando ◽  
Rosa Planelles ◽  
Javier Madrigal ◽  
Mercedes Guijarro ◽  
...  

Spain is one of the Mediterranean countries most severely affected by wildfires during the last 30 years, despite enhanced fire suppression efforts. At present, forest area is increasing more in Spain than in any other European country, and also has one of the highest densities of fire ignitions. However, forest management plans have been developed for only 13% of Spanish forest areas. The objective of the present study was to assess the role of forest fuel management for wildfire prevention in Spain. Different fuel management techniques, including mechanical treatments, prescribed burning and controlled grazing, were considered. A quantitative SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis was performed, based on a thorough documentation review and on the opinions of forest fire experts. Results enabled the identification of obstacles that hinder the implementation of effective fuel management, and suggested strategic recommendations to overcome them. New opportunities related to rural development activities (e.g. promotion of ‘FIRESMART’ products) would be highly relevant in fire-prone forest areas. These opportunities should provide additional funding for sustainable forest management and could foster fuel management activities that would directly involve and benefit rural populations.


2012 ◽  
Vol 21 (3) ◽  
pp. 297 ◽  
Author(s):  
Owen F. Price ◽  
Jeremy Russell-Smith ◽  
Felicity Watt

Fire regimes in many north Australian savanna regions are today characterised by frequent wildfires occurring in the latter part of the 7-month dry season. A fire management program instigated from 2005 over 24 000 km2 of biodiversity-rich Western Arnhem Land aims to reduce the area and severity of late dry-season fires, and associated greenhouse gas emissions, through targeted early dry-season prescribed burning. This study used fire history mapping derived mostly from Landsat imagery over the period 1990–2009 and statistical modelling to quantify the mitigation of late dry-season wildfire through prescribed burning. From 2005, there has been a reduction in mean annual total proportion burnt (from 38 to 30%), and particularly of late dry-season fires (from 29 to 12.5%). The slope of the relationship between the proportion of early-season prescribed fire and subsequent late dry-season wildfire was ~–1. This means that imposing prescribed early dry-season burning can substantially reduce late dry-season fire area, by direct one-to-one replacement. There is some evidence that the spatially strategic program has achieved even better mitigation than this. The observed reduction in late dry-season fire without concomitant increase in overall area burnt has important ecological and greenhouse gas emissions implications. This efficient mitigation of wildfire contrasts markedly with observations reported from temperate fire-prone forested systems.


Author(s):  
Julien Ruffault ◽  
Thomas Curt ◽  
Nicolas K. Martin St-Paul ◽  
Vincent Moron ◽  
Ricardo M. Trigo

Abstract. Increasing drought conditions under global warming are expected to alter the frequency and distribution of large, high intensity wildfires. Yet, little is known regarding how it will affect fire weather and translate into wildfire behaviour. Here, we analysed the climatology of extreme wildfires that occurred during the exceptionally dry summers of 2003 and 2016 in Mediterranean France. We identified two distinct shifts in fire climatology towards fire weather spaces that had not been explored before, and which result from specific interactions between the types of drought and the types of fire. In 2016, a long-lasting press drought intensified wind-driven fires. In 2003, a hot drought combining a heatwave with a press drought intensified heat-driven fires. Our findings highlight that increasing drought conditions projected by climate change scenarios might affect the dryness of fuel compartments and create several new generations of wildfire overwhelming fire suppression capacities.


Author(s):  
Christopher I. Roos

It has been suggested that anthropogenic burning may have altered Southwest landscapes at a large scale. Southwestern biomes vary in their propensity for and their susceptibility to anthropogenic burning practices. Anthropogenic burning to enhance the productivity of wild plant foraging or agriculture was probably limited in scale; on the other hand, fire use in hunting, religious practice, and warfare may have impacted larger scales, though at lower intensity. Middle-elevation forests, woodlands, and grasslands were the biotic zones most likely to be impacted by anthropogenic burning, but sophisticated mimicry of natural fire regimes means that the evidence of such impact is ambiguous.


2012 ◽  
Vol 124 (1) ◽  
pp. 1 ◽  
Author(s):  
A. Malcolm Gill

In the trend towards the domestication, or taming, of fire regimes in Victoria, Australia, the level of prescribed burning has been stepped up due to a recommendation from the 2009 Victorian Bushfires Royal Commission. While prescribed burning programs may be instituted for a number of reasons, especially the protection of life and property, they have consequences for the conservation of biodiversity. Not all vegetation types can be prescribed burned because the weather does not always allow it to occur under safe working conditions; where prescribed burning programs are carried out, unplanned fires may still occur. Thus, the general issue is the effect on biodiversity of both prescribed and unplanned fires, neither alone. Here, the importance to biodiversity conservation of all the components of the fire regime– interval, season, intensity and type (peat fire or otherwise) – and their domain of variability is emphasized. If conservation of biodiversity is to be guaranteed in a changing fire world, then much more knowledge about the systems being managed, gained in large part through effective monitoring, is needed. Issues such as targets and some assumptions of management are addressed here.


Sign in / Sign up

Export Citation Format

Share Document