Initial Effects of Prescribed Burning and Understory Fertilization on Browse Production in Closed-Canopy Hardwood Stands

2010 ◽  
Vol 1 (2) ◽  
pp. 64-72 ◽  
Author(s):  
Christopher E. Shaw ◽  
Craig A. Harper ◽  
Michael W. Black ◽  
Allan E. Houston

Abstract Forage production for white-tailed deer Odocoileus virginianus is often limited in closed-canopy forests. We measured browse production and nutritional carrying capacity after prescribed burning and understory fertilization in closed-canopy hardwood stands one growing season after treatment in two physiographic regions of Tennessee. Nutritional carrying capacity estimates for prescribed burning, fertilization, and prescribed burning with fertilization were greater than in controls on the Cumberland Plateau. However, the cost per pound of forage produced after fertilization exceeded US$26. In the Coastal Plain, fertilization did not affect nutritional carrying capacity, and prescribed burning and prescribed burning with fertilization lowered nutritional carrying capacity from controls. At both sites, prescribed fire had minimal effect on soil pH or soil phosphate and potash levels. Our results suggest prescribed fire and fertilization are of limited utility for increasing browse production in closed-canopy hardwood forests.

2010 ◽  
Vol 34 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Scott L. Goodrick ◽  
Dan Shea ◽  
John Blake

Abstract Recent changes in air quality regulations present a potential obstacle to continued use of prescribed fire as a land management tool. Lowering of the acceptable daily concentration of particulate matter from 65 to 35 μg/m3 will bring much closer scrutiny of prescribed burning practices from the air quality community. To work within this narrow window, land managers need simple tools to allow them to estimate their potential emissions and examine trade-offs between continued use of prescribed fire and other means of fuels management. A critical part of the emissions estimation process is determining the amount of fuel consumed during the burn. This study combines results from a number of studies along the Upper Coastal Plain of South Carolina to arrive at a simple means of estimating total fuel consumption on prescribed fires. The result is a simple linear relationship that determines the total fuel consumed as a function of the product of the preburn fuel load and the burning index of the National Fire Danger Rating System.


1998 ◽  
Vol 22 (3) ◽  
pp. 138-142 ◽  
Author(s):  
T.A. Barnes ◽  
D.H. Van Lear

Abstract Fire treatments were initiated in 1990 to evaluate effects of low-intensity prescribed fires on composition and structure of the advanced regeneration pool under mature mixed-hardwood stands on upland sites in the Piedmont of South Carolina. One spring burn was as effective as three winter burns in reducing midstory density, considered a prerequisite for subsequent development of oak (Quercus spp.) advanced regeneration. Burning increased the number of oak rootstocks, reduced the relative position of competing species, and increased root-to-shoot ratios of oak stems in the regeneration layer. These favorable effects of fire on oak regeneration outweigh the removal of small, poorly formed oak stems from the midstory/understory strata during burning. Prescribed burning in hardwood forests may solve some of the current oak regeneration problems, especially on better upland sites in the South. South. J. Appl. For. 22(3):138-142.


2006 ◽  
Vol 15 (2) ◽  
pp. 203 ◽  
Author(s):  
Stephen Brewer ◽  
Corey Rogers

Using Geographic Information Systems and US Forest Service data, we examined relationships between prescribed burning (from 1979 to 2000) and the incidence, size, and intensity of wildfires (from 1995 to 2000) in a landscape containing formerly fire-suppressed, closed-canopy hardwood and pine–hardwood forests. Results of hazard (failure) analyses did not show an increased likelihood of large, small, or intense wildfires with an increase in the number of years since the last prescribed fire. Wildfires of various sizes and intensities were more likely to occur in years with lower than average precipitation, regardless of when these areas were last burned. Calculations of expected lightning-fire potential based on weather patterns predicted a peak in lightning-started fires in the early to late summer. Lightning fires were rare, however, and wildfire activity was greatest in the spring and fall. We hypothesize that the ineffectiveness of prescribed burning in reducing wildfire hazard and the low incidence of wildfires in the midsummer in north Mississippi are both artifacts of fire suppression in the past, which converted open oak–pine woodlands with persistent pyrogenic surface fuels that accumulated over time to closed-canopy forests that lack such fuels. We suggest that open canopies and grass-based surface fuels must first be restored before prescribed burning will achieve most desirable management goals in this region, including hazard reduction and ecological restoration of natural fire regimes.


2011 ◽  
Vol 35 (4) ◽  
pp. 184-192
Author(s):  
Kutcher K. Cunningham ◽  
Andrew W. Ezell ◽  
Keith L. Belli ◽  
John D. Hodges ◽  
Emily B. Schultz

Abstract A decisionmaking model was developed to assist hardwood resource managers in determining the management potential, for sawlog production, of southern upland hardwood stands within the Cumberland Plateau, Western Highland Rim, and Upper Coastal Plain physiographic provinces. The model determines stands to be either manageable (using intermediate stand management) or in need of regeneration. Stand index values were established for even-aged stands using stocking guidelines, individual tree characteristics, and tree class. Threshold index values for continued stand management were established for four sawtimber management objectives in the Cumberland Plateau and three sawtimber management objectives in the Western Highland Rim and Upper Coastal Plain. Stand index values above or below the threshold value returned a decision to continue to manage or initiate regeneration methods for a stand, respectively. In the Cumberland Plateau and Western Highland Rim provinces, a similarity of percentage between model decisions and decisions from an expert panel of hardwood silviculturists was calculated to assist in determining model effectiveness. The overall agreement between the model and experts was 71%.


2019 ◽  
Vol 65 (4) ◽  
pp. 483-491
Author(s):  
Michael P Glow ◽  
Stephen S Ditchkoff ◽  
Mark D Smith

AbstractPrescribed fire is a cost-effective habitat management tool in pine stands to enhance the quantity and quality of forage available for white-tailed deer (Odocoileus virginianus). Management recommendations typically suggest a 3- to 5-year burn rotation in mixed pine–hardwood stands to increase quality forage production, but as fire frequency increases, forb and legume biomass increases, and woody browse decreases. A more frequent burn rotation may be a viable management option for deer managers, but there is still a lack of information regarding preferred forage and nutritional carrying capacity response to prescribed fire at these intervals. We measured the production and nutritional quality of forage within mature pine–hardwood stands after a 1- or 2-year fire-return interval during three nutritionally stressful periods for deer on a 640-acre (259-hectare) enclosure located in east-central Alabama during 2014 and 2015. These stands had previously been burned annually for over 15 years, resulting in an abundance of herbaceous vegetation. We then compared forage class biomass, nutritional carrying capacity estimates, and digestible protein between burn treatments. A 1-year fire return interval improved habitat quality to a greater degree than a 2-year fire return interval by increasing the production of forage able to support greater nutritional planes. An annual burn rotation is an effective option for managers to increase protein availability in pine–hardwood stands, but other factors such as decreased cover availability and soft mast production should also be considered.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
W. Mark Ford ◽  
Joshua B. Johnson ◽  
Melissa Thomas-Van Gundy

Before the arrival of white-nose syndrome in North America, the northern long-eared bat (Myotis septentrionalis) was a common cavity-roosting bat species in central Appalachian hardwood forests. Two successive prescribed burns on the Fernow Experimental Forest, West Virginia, in 2008 and 2009, were shown to positively affect maternity colony day-roost availability and condition in the near-term. However, whether immediate benefits were temporary and if burned forests actually experienced an accelerated loss of trees and snags possibly suitable for bats more than background loss in unburned forests became an important question following the species’ threatened designation. In 2016, we revisited 81 of 113 northern long-eared bat maternity colony day-roosts initially discovered in 2007–2009 with the objective of ascertaining if these trees and snags were still standing and thus potentially “available” for bat use. Initial tree or snag stage condition class and original year of discovery were contributory factors determining availability by 2016, whereas exposure to prescribed fire and tree/snag species decay resistance were not. Because forest managers may consider using habitat enhancement to improve northern long-eared bat survival, reproduction, and juvenile recruitment and must also protect documented day-roosts during forestry operations, we conclude that initial positive benefits from prescribed burning did not come at the expense of subsequent day-roost loss greater than background rates in these forests at least for the duration we examined.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 89-90
Author(s):  
Kevin Meng ◽  
Eric Bailey ◽  
Hannah Allen ◽  
Derek Brake

Abstract Prescribed fire may be a non-chemical alternative for seedhead suppression in endophyte-infected tall fescue forage systems. A study was conducted to observe the effects of a single prescribed burn on seed head production, ergot alkaloid concentration, forage production, forage quality, and stand composition in K31 tall fescue plots (endophyte infection=96%). Treatments of an undisturbed control (CON), March mow (MOW), March burn (EARLY), and April burn (LATE) were randomly applied to 56 square meter plots with ten replicates per treatment. Plots were sampled for forage quality and ergot alkaloid concentrations monthly from May to October. Forage production and species composition was recorded in June and October. Fescue seedhead count was conducted in May. After June sampling, plots were clipped to a height of 10 cm and litter was removed to simulate spring grazing. CON had greater (P < 0.01) total forage production in June than other treatments. MOW had greater (P < 0.01) forage production (≤107 kg/ha) than EARLY and LATE in June. There was no effect (P = 0.30) of treatments on forage production in October. LATE burn reduced (month × trt; P = 0.02) ergovaline concentration in June but all treatments were above the established threshold (150 ppb) for fescue toxicosis. Fescue seed head frequency was decreased (P < 0.01) by 50% in LATE plots. There was no treatment effect (P ≥ 0.22) on forb and non-fescue grass frequency in May, but warm season grass frequency was greater (P < 0.01) in LATE plots in October. Crude protein in LATE was greater than other treatments in May and both LATE and CON were greater than other treatments in June (P < 0.01). Neutral detergent fiber for LATE was less than other treatments in May and June (P < 0.01). Under conditions of this experiment, prescribed fire decreased seed head count and ergot alkaloid concentration, with a modest reduction in forage production.


Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 37
Author(s):  
Tony Marks-Block ◽  
William Tripp

Prescribed burning by Indigenous people was once ubiquitous throughout California. Settler colonialism brought immense investments in fire suppression by the United States Forest Service and the California Department of Forestry and Fire Prevention (CAL FIRE) to protect timber and structures, effectively limiting prescribed burning in California. Despite this, fire-dependent American Indian communities such as the Karuk and Yurok peoples, stalwartly advocate for expanding prescribed burning as a part of their efforts to revitalize their culture and sovereignty. To examine the political ecology of prescribed burning in Northern California, we coupled participant observation of prescribed burning in Karuk and Yurok territories (2015–2019) with 75 surveys and 18 interviews with Indigenous and non-Indigenous fire managers to identify political structures and material conditions that facilitate and constrain prescribed fire expansion. Managers report that interagency partnerships have provided supplemental funding and personnel to enable burning, and that decentralized prescribed burn associations facilitate prescribed fire. However, land dispossession and centralized state regulations undermine Indigenous and local fire governance. Excessive investment in suppression and the underfunding of prescribed fire produces a scarcity of personnel to implement and plan burns. Where Tribes and local communities have established burning infrastructure, authorities should consider the devolution of decision-making and land repatriation to accelerate prescribed fire expansion.


2008 ◽  
Vol 38 (4) ◽  
pp. 844-850 ◽  
Author(s):  
Gregory Peters ◽  
Anna Sala

Thinning and thinning followed by prescribed fire are common management practices intended to restore historic conditions in low-elevation ponderosa pine ( Pinus ponderosa Dougl. ex P. & C. Laws.) forests of the northern Rocky Mountains. While these treatments generally ameliorate the physiology and growth of residual trees, treatment-specific effects on reproductive output are not known. We examined reproductive output of second-growth ponderosa pine in western Montana 9 years after the application of four treatments: thinning, thinning followed by spring prescribed fire, thinning followed by fall prescribed fire, and unthinned control stands. Field and greenhouse observations indicated that reproductive traits vary depending on the specific management treatment. Cone production was significantly higher in trees from all actively managed stands relative to control trees. Trees subjected to prescribed fire produced cones with higher numbers of filled seeds than trees in unburned treatments. Seed mass, percentage germination, and seedling biomass were significantly lower for seeds from trees in spring burn treatments relative to all others and were generally higher in trees from fall burn treatments. We show for the first time that thinning and prescribed-burning treatments can influence reproductive output in ponderosa pine.


Sign in / Sign up

Export Citation Format

Share Document