The effect of fuel moisture content on the spread rate of forest fires in the absence of wind or slope

2017 ◽  
Vol 26 (1) ◽  
pp. 24 ◽  
Author(s):  
Carlos G. Rossa

Most studies on the effect of fuel moisture content (FMC) on forest fire behaviour focus on dead fuel moisture; mechanisms of fire spread in live vegetation are considered to remain unexplained by current theory and modelling. In this work, an empirical model for quantifying the effect of FMC on the ratio between spread rate and fuel bed height of fires in the absence of wind or slope was proposed. The model was fitted using data from laboratory experiments, carried out in fuel beds representative of natural litter and shrubland fuel complexes in a wide range of FMC (6–179%), and tested against data from field experiments and wildfires. The pattern of spread rate variation with FMC, namely its reduced rate for values above ~80%, was explained by the ratio between fuel low heat content and energy required for ignition.


2009 ◽  
Vol 18 (6) ◽  
pp. 698 ◽  
Author(s):  
Paulo M. Fernandes ◽  
Hermínio S. Botelho ◽  
Francisco C. Rego ◽  
Carlos Loureiro

An experimental burning program took place in maritime pine (Pinus pinaster Ait.) stands in Portugal to increase the understanding of surface fire behaviour under mild weather. The spread rate and flame geometry of the forward and backward sections of a line-ignited fire front were measured in 94 plots 10–15 m wide. Measured head fire rate of spread, flame length and Byram’s fire intensity varied respectively in the intervals of 0.3–13.9 m min–1, 0.1–4.2 m and 30–3527 kW m–1. Fire behaviour was modelled through an empirical approach. Rate of forward fire spread was described as a function of surface wind speed, terrain slope, moisture content of fine dead surface fuel, and fuel height, while back fire spread rate was correlated with fuel moisture content and cover of understorey vegetation. Flame dimensions were related to Byram’s fire intensity but relationships with rate of spread and fine dead surface fuel load and moisture are preferred, particularly for the head fire. The equations are expected to be more reliable when wind speed and slope are less than 8 km h–1 and 15°, and when fuel moisture content is higher than 12%. The results offer a quantitative basis for prescribed fire management.



Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 507 ◽  
Author(s):  
Ping Sun ◽  
Yunlin Zhang ◽  
Long Sun ◽  
Haiqing Hu ◽  
Futao Guo ◽  
...  

Cigarette butts are an important human firebrand and account for a significant amount of man-made fires. To better address forest fires caused by cigarette butts, the influencing factors governing the ignition probability of cigarette butts can be used to establish a prediction model. This study obtains the influencing factors of the ignition probability of cigarette butts in order to establish a prediction model by constructing fuel beds composed of Mongolian oak leaves with varied fuel moisture content and packing ratios. A total of 2520 ignition experiments were then conducted by dropping cigarette butts on the fuel beds to test the burning probability of the fuels under varied wind speeds. Moisture content, wind speed, and their interaction significantly influenced ignition probability. In the absence of wind, the ignition probability is zero. The maximum moisture content of Mongolian oak leaves that could be ignited by cigarette butts was 15%. A logistic model and self-built model for predicting the ignition probability were established using these results; the mean absolute error values for the two models were 2.71% and 1.13%, respectively, and the prediction error of the self-built model was lower than that of the logistic model. This is important research to mitigate the threat of forest fires due to cigarette butts given the frequent occurrence of these events.



Author(s):  
Francois Pimont ◽  
Julien Ruffault ◽  
Nicolas Martin ◽  
Jean-Luc Dupuy

Live fuel moisture content (LFMC) influences fire activity at landscape scale and fire behavior in laboratory experiments. However, field evidences linking LFMC to fire behavior are very limited despite numerous field experiments. In the present study, we reanalyze a shrubland fire dataset with a special focus on LFMC to explain this counterintuitive outcome. We found that this controversy might result from three reasons. First, the range of experimental LFMC  data was too moist to reveal significant effect with the widespread exponential or power functions. Indeed, LFMC exhibited a strong effect below 100%, but marginal above this threshold, contrary to these functions. Second, we found that the LFMC significance was unlikely when the size of the dataset was smaller than 40. Finally, a complementary analysis suggested that 10 to 15% of random measurement error in variables could lead to an underestimation by 30 % of the LFMC effect. The effect of LFMC in field experiments is thus stronger than previously reported in the range prevailing during the actual French fire season and in accordance with observations at different scales. This highlights the need to improve our understanding of the relationship between LFMC and fire behavior to refine fire danger predictions.



2017 ◽  
Vol 47 (7) ◽  
pp. 883-889 ◽  
Author(s):  
Carlos G. Rossa ◽  
Paulo M. Fernandes

A laboratory experimental program addressing fire spread in fuel beds composed of dead foliage litter and vertically placed quasi-live branches, representative of many natural fuel complexes, was carried out for either still-air or wind conditions. Fuel-bed characteristics, fire spread rate, flame geometry, and fuel consumption were assessed and empirical models for estimating several parameters were developed. Weighted fuel moisture content (18%–163%) provided good estimates of fire-behaviour characteristics and accounted for most of the variation in still-air and wind-driven spread rate (0.1–1.3 m·min−1). When predicting still-air fire spread rate, fuel height was the most relevant fuel-bed structural parameter and fuel type had significant influence, whereas for wind-driven spread, the effect of foliar fuel-bed density was dominant and fuel type became irrelevant. Flame length (0.4–2.2 m) increased from still-air to wind-assisted (8 km·h−1) fire spread, but its height remained constant. The fraction of total fuel load and mean woody fuel diameter consumed by fire were reasonably predicted from weighted fuel moisture content alone, but predictions for the latter variable improved substantially by adding foliar fuel load.



2018 ◽  
Vol 27 (2) ◽  
pp. e009 ◽  
Author(s):  
Carlos G. Rossa

Aim of study: To develop a fuel moisture content (FMC) attenuation factor for empirical forest fire spread rate (ROS) models in general fire propagation conditions.Methods: The development builds on the assumption that the main FMC-damping effect is a function of fuel ignition energy needs.Main results: The generic FMC attenuation factor was successfully used to derive ROS models from laboratory tests (n = 282) of fire spread in no-wind and no-slope, slope-, and wind-aided conditions. The ability to incorporate the FMC attenuation factor in existing field-based ROS models for shrubland fires and grassland wildfires (n = 123) was also positively assessed.Research highlights: Establishing a priori the FMC-effect in field fires benefits the proper assessment of the remaining variables influence, which is normally eluded by heterogeneity in fuel bed properties and correlated fuel descriptors.



2019 ◽  
Vol 28 (2) ◽  
pp. 127 ◽  
Author(s):  
F. Pimont ◽  
J. Ruffault ◽  
N. K. Martin-StPaul ◽  
J.-L. Dupuy

Live fuel moisture content (LFMC) influences fire activity at landscape scale and fire behaviour in laboratory experiments. However, field evidence linking LFMC to fire behaviour are very limited, despite numerous field experiments. In this study, we reanalyse a shrubland fire dataset with a special focus on LFMC to investigate this counterintuitive outcome. We found that this controversy might result from three causes. First, the range of experimental LFMC data was too moist to reveal a significant effect with the widespread exponential or power functions. Indeed, LFMC exhibited a strong effect below 100%, but marginal above this threshold, contrary to these functions. Second, we found that the LFMC significance was unlikely when the number of fire experiments was smaller than 40. Finally, an analysis suggested that 10 to 15% measurement error – arising from the estimation of environmental variables from field measurements – could lead to an underestimation by 30% of the LFMC effect. The LFMC effect in field experiments is thus stronger than previously reported in the range of LFMC occurring during the French fire season and in accordance with observations at different scales. This highlights the need to improve our understanding of the relationship between LFMC and fire behaviour to refine fire-danger predictions.



Fire ◽  
2018 ◽  
Vol 1 (3) ◽  
pp. 43 ◽  
Author(s):  
Carlos Rossa ◽  
Paulo Fernandes

Currently, there is a dispute on whether live fuel moisture content (FMC) should be accounted for when predicting a real-world fire-spread rate (RoS). The laboratory and field data results are conflicting: laboratory trials show a significant effect of live FMC on RoS, which has not been convincingly detected in the field. It has been suggested that the lack of influence of live FMC on RoS might arise from differences in the ignition of dead and live fuels: flammability trials using live leaves subjected to high heat fluxes (80–140 kW m−2) show that ignition occurs before all of the moisture is vaporized. We analyze evidence from recent studies, and hypothesize that differences in the ignition mechanisms between dead and live fuels do not preclude the use of overall fine FMC for attaining acceptable RoS predictions. We refer to a simple theory that consists of two connected hypotheses to explain why the effect of live FMC on field fires RoS has remained elusive so far: H1, live tree foliage FMC remains fairly constant over the year; and H2, the seasonal variation of live shrubs’ FMC correlates with the average dead FMC. As a result, the effect of live FMC is not easily detected by statistical analysis.



2015 ◽  
Vol 24 (4) ◽  
pp. 443 ◽  
Author(s):  
Wendy R. Anderson ◽  
Miguel G. Cruz ◽  
Paulo M. Fernandes ◽  
Lachlan McCaw ◽  
Jose Antonio Vega ◽  
...  

A shrubland fire behaviour dataset was assembled using data from experimental studies in Australia, New Zealand, Europe and South Africa. The dataset covers a wide range of heathlands and shrubland species associations and vegetation structures. Three models for rate of spread are developed using 2-m wind speed, a wind reduction factor, elevated dead fuel moisture content and either vegetation height (with or without live fuel moisture content) or bulk density. The models are tested against independent data from prescribed fires and wildfires and found to predict fire spread rate within acceptable limits (mean absolute errors varying between 3.5 and 9.1 m min–1). A simple model to predict dead fuel moisture content is evaluated, and an ignition line length correction is proposed. Although the model can be expected to provide robust predictions of rate of spread in a broad range of shrublands, the effects of slope steepness and variation in fuel quantity and composition are yet to be quantified. The model does not predict threshold conditions for continuous fire spread, and future work should focus on identifying fuel and weather factors that control transitions in fire behaviour.



2016 ◽  
Vol 25 (5) ◽  
pp. 569 ◽  
Author(s):  
Carlos G. Rossa ◽  
Ricardo Veloso ◽  
Paulo M. Fernandes

Observational evidence of an effect of live vegetation moisture content on fire spread rate remains extremely scarce despite the significance of fire activity in fuel complexes dominated by live components. This study assessed the moisture content effect of quasi-live fuels on fire spread rates measured in laboratory experiments. Fuel beds were built by vertically placing vegetation clippings to reproduce the natural upright fuel structure. The fuel drying process during storage resulted in a wide moisture content range (13–180%). An exponential damping function was fitted to rate of spread observations in four fuel types, indicating that rate of spread is halved by an increase in live moisture content from 50 to 180%. This effect, especially at higher moisture contents, was weaker than that predicted by theoretical formulations and from studies in mixtures of dead and live fuel.



Sign in / Sign up

Export Citation Format

Share Document