Seasonal field energetics and water influx rates of the greater bilby (Macrotis lagotis)

2000 ◽  
Vol 48 (3) ◽  
pp. 225 ◽  
Author(s):  
Lesley A. Gibson ◽  
Ian D. Hume

Water and energy requirements of free-living male and female greater bilbies (Macrotis lagotis) were measured over two summers and two winters on Astrebla Downs National Park in far south-western Queensland, Australia, by means of the doubly labelled water method. Mean water influx rate of the bilby (mean body mass: summer 928 g; winter 848 g) did not differ between summer (63.1 mL day–1) and winter (53.1 mL day–1), but mean field metabolic rate was significantly higher during summer (617.2 kJ day–1) than in winter (480.3 kJ day–1). The comparatively low water influx rate of the bilby (significantly lower than that predicted for a 887-g marsupial: P < 0.001) indicated that bilbies have the ability to conserve water in the wild. In contrast, field metabolic rate of the bilby did not differ significantly from that predicted for a marsupial of its body mass (P = 0.999). Bilbies were able to obtain sufficient food and water to satisfy energy and water requirements in three out of the four study periods. However, they were in negative energy and water balance during one study period, suggesting that they are susceptible to nutrient and water stress. The relatively low body fat stores of bilbies in the wild also indicate that they are vulnerable to periods of low food availability. The metabolic strategies of the bilby are only partly suggestive of adaptation to arid conditions.

1996 ◽  
Vol 44 (5) ◽  
pp. 445 ◽  
Author(s):  
WW Weathers ◽  
DC Paton ◽  
RS Seymour

Field metabolic rate (FMR) and water influx of New Holland honeyeaters (Phylidonyris novaehollandiae), eastern spinebills (Acanthorhynchus tenuirostris) and a crescent honeyeater (P. pyrrhoptera) were measured by the doubly labelled water technique. New Holland honeyeaters had just finished breeding and were beginning their summer moult. They ranged in mass from 15.4 to 21.0 g (mean = 17.3 g, n = 12) and had FMRs averaging 8.8 mt CO2 g(-1) h(-1) or 77.6 kJ day(-1), which was 2.8 times their measured basal metabolic rate (BMR). Their water influx rate averaged 10.7 mL day(-1). Eastern spinebills were still feeding young and had yet to begin moulting. They ranged in mass from 8.0 to 10.7 g (mean = 9.7 g, n = 6), had FMRs averaging 10.9 mL CO2 g(-1) h(-1) or 52.9 kJ day(-1) (2.5 times their measured BMR), and had an average water influx rate of 8.7 mL day(-1). FMR and water influx of a single 14.6-g crescent honeyeater, which was in late primary moult, were 75.9 kJ day(-1) (2.7 times measured BMR) and 12.5 mL day(-1). The FMR of New Holland honeyeaters varied inversely with mean standard operative temperature (T-es) calculated for values of T-es below 20 degrees C as follows: FMR (kJ day(-1)) = 134 - 5.47 T-es (n = 12, r(2) = 0.52). Honeyeater FMRs were much lower than would be predicted allometrically for hummingbirds of the same mass, reflecting the honeyeaters' low-cost foraging tactic of consuming nectar while perched.


1994 ◽  
Vol 72 (11) ◽  
pp. 1967-1972 ◽  
Author(s):  
Donald W. Thomas ◽  
Kathy Martin ◽  
Hélène Lapierre

We measured background 2H and 18O abundances and field metabolic rate (FMR) for White-tailed Ptarmigan (Lagopus leucurus) above 3600 m elevation in the Colorado Rocky Mountains between May and July. 18O abundances ranged from 1982.4 to 2018.6 ppm [Formula: see text], while 2H abundance ranged from 142.8 to 154.0 ppm [Formula: see text]. Mean 2H abundance followed closely (−0.3 ppm deviation) the level predicted by Tatner's empirical model relating 2H and ambient temperature. However, 18O was more enriched than predicted (+3.4 ppm), which may reflect 18O fractionation in the plant diet. FMR, measured by means of the doubly labelled water method, ranged from 206.4 to 442.7 kJ/d and was not related to body mass. However, for males, FMR was significantly and positively related to age. Because of high variation in background isotope levels, the use of mean 2H and 18O background abundances instead of individual backgrounds would introduce a mean error of 7.1% (range −8.9 to +11.4%) in calculations of CO2 production and FMR.


2002 ◽  
Vol 205 (22) ◽  
pp. 3571-3575 ◽  
Author(s):  
Avner Anava ◽  
Michael Kam ◽  
Amiram Shkolnik ◽  
A. Allan Degen

SUMMARY Arabian babblers (Turdoides squamiceps; mean adult body mass=72.5 g) inhabit extreme deserts of Israel. Previous studies have shown that their daily field metabolic rates are similar in winter and summer and that there is an increase during the breeding season. We hypothesized that the difference in seasonal daily field metabolic rate would be a consequence of differences in daytime metabolic rate, and that night-time metabolic rate would be similar during the three seasons. We used doubly labelled water to determine daily,daytime and night-time field metabolic and water-influx rates in breeding babblers in spring and nonbreeding babblers in winter and summer. Daily and daytime energy expenditure rates were higher during the breeding season than during either summer or winter, but there was no difference among seasons in night-time energy expenditure rates. Thus, our hypothesis was supported. The daytime field metabolic rates in summer and winter nonbreeding babblers were 3.92× and 4.32× the resting metabolic rate (RMR),respectively, and in breeding babblers was 5.04× RMR, whereas the night-time field metabolic rates ranged between 1.26× RMR and 1.35× RMR in the three seasons. Daily and daytime water-influx rates were highest in winter, intermediate during the breeding season and lowest in summer, but there was no difference among seasons in night-time water-influx rate. Daytime water-influx rate was greater than night-time water-influx rate by 2.5-fold in summer, 3.9-fold in the breeding season and 6.75-fold in winter. Seasonal patterns of daily and daytime energy expenditure were similar, as were seasonal patterns of daily and daytime water influx. Daily and daytime energy expenditure and water-influx rates differed among seasons whereas night-time rates of both did not. Daily and daytime field metabolic rates of babblers were highest during the breeding season, whereas daily and daytime water-influx rates were highest in winter.


1988 ◽  
Vol 36 (2) ◽  
pp. 159 ◽  
Author(s):  
R Gales ◽  
B Green ◽  
C Stahel

Levels of circulating triglycerides and cholesterol in moulting little penguins in Tasmania were measured before, and throughout the moult. Levels at the initiation of moult were similar to those in breeding birds but increased by 2.5 times (triglycerides) and 1.8 times (cholesterol) during the moult. Water flux rates and field metabolic rate (FMR) were measured throughout moult with tritiated and doubly labelled water. TBW ranged from 54 to 70% body weight and increased during moult. Water influx rates were significantly correlated with rate of weight change. Mean FMR of moulting little penguins was 657 kJ kg-' day-', or 1.5 times basal metabolic rate (BMR), and there was no difference between sites or sexes. The water influx rates of birds foraging immediately after moult were 11 times higher than in moulting birds. The energy required to sustain a moulting little penguin is 15% higher than that required for a resting, non-moulting penguin. Although the cost of moult is elevated above BMR, the main energetic expense is met during the pre-moult foraging period when birds must consume enough food to ensure that they lay down sufficient fat reserves to sustain the moult.


1991 ◽  
Vol 39 (3) ◽  
pp. 299 ◽  
Author(s):  
KA Nagy ◽  
SD Bradshaw ◽  
BT Clay

Field metabolic rates (FMRS) and water influx rates of free-living short-nosed bandicoots (Isoodon obesulus) were measured via the doubly labelled water technique. Bandicoots ranging in body mass from 775 to 1825 g (mean = 1230 g) had FMRS averaging 0.908 mL CO2 g-1 h-1, or 644 kJ d-1. This is about 2.7 times predicted basal metabolic rate. Water influx rates during the autumn measurement period were comparatively low, averaging 88.8 mL kg-1 d-1, or 103 mL d-1 for a 1230 g animal. Feeding rate (dry matter intake) was estimated to be 45 g d-1, assuming that the food was half invertebrates and half plant tissues (dry matter basis). Performed and metabolically produced water from the food can completely account for total water intake, indicating that bandicoots did not drink the rainwater or pond water that was available. The study population (estimated density = 0.63 bandicoots ha-1) consumed food at a rate of about 62 g fresh matter ha-1 d-1 (equivalent to 27 g dry matter or 605 kJ ha-1 d-1), which is similar to the food requirements of populations of small eutherian and marsupial insectivores in other habitats.


2013 ◽  
Vol 82 (5) ◽  
pp. 1009-1020 ◽  
Author(s):  
Lawrence N. Hudson ◽  
Nick J. B. Isaac ◽  
Daniel C. Reuman

2009 ◽  
Vol 87 (10) ◽  
pp. 956-964 ◽  
Author(s):  
Michael J. Sheriff ◽  
J. R. Speakman ◽  
L. Kuchel ◽  
S. Boutin ◽  
M. M. Humphries

The hypothesis that cold air temperatures (Ta) constrain the metabolic diversity of high-latitude endotherms is based on the observation among birds and mammals that mean field metabolic rate (FMR) increases, whereas the variability of FMR decreases, from the warm tropics to the cold poles. However, there is a paucity of FMR measurements from above 60° latitude and below 0 °C. We measured the daily energy expenditure of a high-latitude population of free-ranging snowshoe hares ( Lepus americanus Erxleben, 1777) in Yukon, Canada, in winter (Ta-mean = –16.4 °C) and in autumn (Ta-mean = 0.5 °C). Doubly labelled water measures of FMR were approximately 20% lower in winter than in autumn, and were a similar, low multiple of resting metabolic rate in both seasons (2.04 and 1.94, respectively). The mass-corrected FMR of snowshoe hares in winter was only half the value predicted by extrapolating the relationship between FMR and Ta > 0 to –16.4 °C. These results contribute to an emerging pattern of a reversal in the relationship between FMR and Ta in free-ranging mammals from negative above 0 °C to positive below 0 °C. We refer to the positive, low Ta portion of this relationship as the cold shoulder, and suggest that it may reflect the general necessity for free-ranging mammals to use behavioural and (or) physiological means to conserve energy during long winters when cold conditions coincide with resource scarcity.


2006 ◽  
Vol 95 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Barry W. Fudge ◽  
Klaas R. Westerterp ◽  
Festus K. Kiplamai ◽  
Vincent O. Onywera ◽  
Michael K. Boit ◽  
...  

Previous studies have found Kenyan endurance runners to be in negative energy balance during training and prior to competition. The aim of the present study was to assess energy balance in nine elite Kenyan endurance runners during heavy training. Energy intake and expenditure were determined over 7d using weighed dietary intake and doubly labelled water, respectively. Athletes were on average in negative energy balance (mean energy intake 13 241 (SD 1330) kJ/d v. mean energy expenditure 14 611 (SD 1043) kJ/d; P=0·046), although there was no loss in body mass (mean 56·0 (SD 3·4) kg v. 55·7 (SD 3·6) kg; P=0·285). The calculation of underreporting was 13; (range −24 to +9%) and almost entirely accounted for by undereating (9% (range −55 to +39%)) as opposed to a lack of significant underrecording (i.e. total water intake was no different from water loss (mean 4·2 (SD 0·6) l/d v. 4·5 (SD 0·8) l/d; P=0·496)). Fluid intake was modest and consisted mainly of water (0·9 (SD 0·5) l/d) and milky tea (0·9 (SD 0·3) l/d). The diet was high in carbohydrate (67·3 (SD 7·8) %) and sufficient in protein (15·3 (SD 4·0) %) and fat (17·4 (SD 3·9) %). These results confirm previous observations that Kenyan runners are in negative energy balance during periods of intense training. A negative energy balance would result in a reduction in body mass, which, when combined with a high carbohydrate diet, would have the potential in the short term to enhance endurance running performance by reducing the energy cost of running.


1995 ◽  
Vol 43 (1) ◽  
pp. 1 ◽  
Author(s):  
JB Williams ◽  
D Bradshaw ◽  
L Schmidt

Spinifex pigeons (Geophaps plumifera) are one of the few avian species that have evolved the capacity to reside in the hot and dry regions of central and north-western Australia. Previous investigation has revealed that their basal metabolic rate (BMR) equals only 68% of allometric prediction. In this study, we addressed the hypothesis that these birds have a reduced field metabolic rate (FMR) and water influx as a result of their lowered BMR. We measured the FMR and water flux of free-living spinifex pigeons by means of the doubly labelled water method. Although body mass of free-living male and female pigeons differed significantly, with males weighing on average 90.8 +/- 7.7 g (+/- s.d.) and females 80.2 +/- 5.6 g, FMR was statistically indistinguishable between sexes. For sexes combined, FMR averaged 139.9 mL CO2 h-1, or 73.5 kJ day-1, a value 38.7% of allometric expectation. These data support the hypothesis that spinifex pigeons have a markedly reduced FMR, probably, in part, the result of a depressed BMR compared with other birds of similar size. Our phylogenetic analysis of the BMR of pigeons lacked sufficient data to determine whether a reduced BMR in Australian pigeons was the consequence of ecological adaptation or phylogenetic constraint. Water influx ranged from 2.5 to 39.0 mL day-1 and averaged 18.4 mL day-1. Of the total water intake, 83.5% came from drinking; their food, seeds, supplied about 4%. Maintenance metabolism, energy allocated to basal plus thermoregulatory metabolism, accounted for about 67% of the average FMR, indicating that the activity requires relatively low energy expenditure in these birds.


The Condor ◽  
2001 ◽  
Vol 103 (2) ◽  
pp. 376-380 ◽  
Author(s):  
Avner Anava ◽  
Michael Kam ◽  
Amiram Shkolnik ◽  
A. Allan Degen

Abstract Arabian Babblers (Turdoides squamiceps; adult body mass 65–75 g) are territorial, cooperatively breeding passerines that inhabit hot, dry deserts. Groups include breeding adults and helpers and generally consist of 3 to 5 individuals (range 2 to 22). All group members provision nestlings at similar rates, and individual visitation rates decline with increasing group size. Consequently, we predicted that the field metabolic rate (FMR) of individuals provisioning nestlings would decrease with increasing group size. To test this prediction, we determined FMR of primary female, primary male, female helper and male helper babblers in different sized groups provisioning nestlings. Field metabolic rate of primary females, but not other classes, decreased linearly with group size. This energy savings could allow primary females in larger groups to start a new nest more quickly. FMR for all babblers was 61% to 66% of the value predicted for a passerine of its body mass provisioning nestlings and was 3.11 × BMR, similar to the mean value of 3.13 × BMR reported for a number of terrestrial species.


Sign in / Sign up

Export Citation Format

Share Document