scholarly journals Seasonal field metabolic rate and water influx of captive-bred reintroduced yellow-footed rock-wallabies (Petrogale xanthopus celeris)

2011 ◽  
Vol 59 (6) ◽  
pp. 400 ◽  
Author(s):  
Steven J. Lapidge ◽  
Adam J. Munn

Captive breeding and release is a tool used by conservation biologists to re-establish populations of endangered or locally extinct species. Reintroduced animals that have been bred in captivity must learn to meet the challenges posed by free living, and to adjust to local environmental conditions, food and water sources. How well reintroduced animals might meet these challenges is uncertain as few longitudinal studies have investigated the physiology of reintroduced animals or the implications of this for successful establishment of new populations. Here we have evaluated long-term, seasonal energy and water use by reintroduced yellow-footed rock-wallabies (Petrogale xanthopus celeris), an endangered medium-sized marsupial that inhabits rocky outcrops across Australia’s arid and semiarid rangelands. Captive-bred rock-wallabies were reintroduced to an area within the known boundaries of their former range, in south-western Queensland, Australia. Post-release water turnover rates (WTR) and field metabolic rates (FMR) were measured during their first wet summer and dry winter, by means of the doubly labelled water method. Total body water (73.1%), FMR (1650.0 kJ day–1), female fecundity (100%), and male and female body masses and survival were consistent between seasons, but rates of water turnover were significantly lower for all animals during the dry winter (174.3 mL day–1) than during the wet summer (615.0 mL day–1). There were no significant differences in WTR or FMR between males and lactating females (in either season).


1978 ◽  
Vol 26 (3) ◽  
pp. 465 ◽  
Author(s):  
SC Nicol

Water turnover rates of Tasmania devils, Sarcophilus harrisii, were measured under standardized conditions by use of tritiated water. Total body water of lactating females was lower than in non- lactating animals, while water turnover rates per kilogram were not significantly different, due to a higher rate constant for lactating animals. Mean water turnover rates were considerably higher than predicted from other marsupial studies. Statistical analysis of data from 13 species of marsupial and 27 eutherian species showed habitat to have a far greater effect on standard water turnover rate than phylogeny.



2003 ◽  
Vol 51 (2) ◽  
pp. 129 ◽  
Author(s):  
Michele Thums ◽  
Ian D. Hume ◽  
Lesley A. Gibson

Water-turnover rates and field metabolic rates were measured in long-nosed bandicoots (Perameles nasuta) near Newcastle, New South Wales, over two summers and two winters. Water-turnover rates were higher in lactating than in non-lactating females, and higher in winter than in summer, possibly because of a relatively high proportion (50%) of females at or near peak lactation in one winter. There were no significant differences in field metabolic rates between seasons or among groups (males, lactating females and non-lactating females). The overall field metabolic rate of the long-nosed bandicoot was within 9% of the predicted value for a marsupial of its size, and similar to rates reported for most other bandicoots, both temperate and arid-zone species. Its overall water-turnover rate was within 18% of the predicted marsupial value, but higher than values reported for arid-zone bandicoot species. Comparison with other data indicates that seasonal changes in water-turnover rate are related to changes in reproductive status (especially lactation), as in this study, but for field metabolic rate, seasonal changes are related to changes in water status and thus productivity of the environment.



1983 ◽  
Vol 31 (5) ◽  
pp. 695 ◽  
Author(s):  
IJ Rooke ◽  
SD Bradshaw ◽  
RA Langworthy

Total body water content (TBW) and TBW turnover were measured by means of tritiated water (HTO) in free-ranging populations of silvereyes, Zosterops lateralis, near Margaret River, W.A. Birds were studied in their natural habitats during spring and summer, and compared with a vineyard population in summer. In the natural habitat TBW content was found to be 77.6% in spring, which was not significantly different from that measured in summer (78.3%). Birds in vineyards in summer, however, were dehydrated, with a TBW content of 69.4%. Calculated rates of water influx for spring, summer and summer vineyards birds were 1.44,2.20 and 0.65 ml g.day-' respectively. These water turnover rates are much higher than those of any other bird yet studied. Dehydration was marked in the vineyard birds, with a significantly lower TBW content and an average net water loss of 0.63 ml day-'. Laboratory studies showed that silvereyes have a low tolerance to sodium loading. Their tolerance is, however, quite adequate for them to drink the most concentrated free water available to them in the field. Ingestion of concentrated sugar solutions of up to 25% did not provoke an osmotic diuresis and thus cannot account for the dehydration and negative water balance of vineyard birds.



1991 ◽  
Vol 39 (3) ◽  
pp. 299 ◽  
Author(s):  
KA Nagy ◽  
SD Bradshaw ◽  
BT Clay

Field metabolic rates (FMRS) and water influx rates of free-living short-nosed bandicoots (Isoodon obesulus) were measured via the doubly labelled water technique. Bandicoots ranging in body mass from 775 to 1825 g (mean = 1230 g) had FMRS averaging 0.908 mL CO2 g-1 h-1, or 644 kJ d-1. This is about 2.7 times predicted basal metabolic rate. Water influx rates during the autumn measurement period were comparatively low, averaging 88.8 mL kg-1 d-1, or 103 mL d-1 for a 1230 g animal. Feeding rate (dry matter intake) was estimated to be 45 g d-1, assuming that the food was half invertebrates and half plant tissues (dry matter basis). Performed and metabolically produced water from the food can completely account for total water intake, indicating that bandicoots did not drink the rainwater or pond water that was available. The study population (estimated density = 0.63 bandicoots ha-1) consumed food at a rate of about 62 g fresh matter ha-1 d-1 (equivalent to 27 g dry matter or 605 kJ ha-1 d-1), which is similar to the food requirements of populations of small eutherian and marsupial insectivores in other habitats.



1990 ◽  
Vol 17 (6) ◽  
pp. 591 ◽  
Author(s):  
KA Nagy ◽  
GD Sanson ◽  
NK Jacobsen

Field metabolic rates (FMRs) and water influx rates were measured via the doubly labelled water method in wild Tasmanian pademelons and grey kangaroos living in the Jock Marshall Reserve at Clayton, Victoria, and in wild black-tailed deer free-ranging within a nature reserve at Davis, California. Deer expended more than 3 times more energy per day than similar sized grey kangaroos. Feeding rates required to achieve energy balance were estimated from FMRs along with an estimate of metabolizable energy content of the food. The estimated feeding rates for pademelons and kangaroos were combined with similar values for 5 other species of macropods to calculate an allometric (scaling) relationship for food requirements of macropod marsupials. Feeding rate had the following relationship to body mass: g food (DM) consumed per day = 0.20 g body mass0.79 (r2 = 0.94). The findings reported herein should be useful for predicting the approximate food requirements of free-ranging macropods and deer for purposes of ecological modelling, conservation efforts and management programmes.



2004 ◽  
Vol 14 (3) ◽  
pp. 347-357 ◽  
Author(s):  
John B. Leiper ◽  
Ron J. Maughan

Total body water (TBW) and water turnover rates (WTR) of 8 competitive swimmers (SW) and 6 age-matched non-training individuals (CON) were determined using deuterium oxide dilution and elimination. During the 7-day study, individuals in the SW group trained 9 times, swimming on average 42.4 km, while the CON group did no regular exercise. Water temperature in the swimming pool was between 26 and 29 °C during training sessions. Body mass at the beginning and end of the study period remained essentially the same in the SW (67.8 ± 6.3 kg) and CON (61.1 ± 8.5 kg) groups. Mean ± SD TBW of the SW (38.7 ± 5.6 L) was similar to that of the CON (37.5 ± 8:0 L). Mean WTR was faster in the SW (54 ± 18 ml · kg · day−1) than the CON (28 ± 21 ml · kg · day−1). Mean daily urine output was similar in the SW (14 ± 5 ml · kg · day−1) and CON (14 ± 3 ml · kg · day−1). Calculated non-renal daily water loss was faster in the SW (41 ± 21 ml · kg · day−1) than the CON (13 ± 20 ml · kg · day−1). This study demonstrates that WTR are faster in young swimmers who exercise strenuously in cool water than in non-training individuals and that the difference was due to the approximately 3-times greater non-renal water losses that the exercising group incurred. This suggests that exercise-induced increases in sweat rates are a major factor in water loss in swimmers training in cool water.





1994 ◽  
Vol 42 (1) ◽  
pp. 29 ◽  
Author(s):  
SD Bradshaw ◽  
KD Morris ◽  
CR Dickman ◽  
PC Withers ◽  
D Murphy

Barrow Island, which lies about 90 km north of Onslow off the arid Western Australian Pilbara coast, experienced its driest year on record in 1990 with a total of only 122.4 mm of rain. Golden bandicoots captured in November 1990 evidenced poor condition and mean body mass was a low 242.6 +/- 10.9 g with-a total body water content (TBW) of 76.3 +/- 1.4%. Despite this substantial loss of body water and solids, the animals maintained water and electrolyte balance during the period of turnover [water influx 79.5 +/- 6.9 v. efflux 83.3 +/- 5-7 mL (kg0.82 day)-1 and sodium influx 4.9 +/- 0.7 v. efflux 5.3 +/- 0.7 mmol (kg day)-1]. By April 1991, although only a further 37.4 mm of rain had been recorded on Barrow Island, the condition of the bandicoots had improved markedly, as a result of exploitation of insect resources, and their mean body mass had increased to 306.5 +/- 22.6 g and TBW decreased to 62.5 +/- 1.4% (both P < 0.001), the latter reflecting enhanced fat stores. This general improvement in condition of the bandicoots was in marked contrast to that of other herbivorous marsupials on the island. Rates of water and sodium turnover of the golden bandicoots were, however, not significantly different from those measured in the previous November, Field Metabolic Rates (FMRs), measured with doubly labelled water ((HHO))-H-3-O-18, were extremely low, averaging only 0.45 +/- 0.26 mL CO2 (g h)-1, which is very close to laboratory estimates of 0.35 +/- 0.09 mL O2(g h)-1 for the basal metabolic rate of this species. A major cyclone struck Barrow Island on 3 March 1992, with 162 mm of rain falling in 24 h, and turnover measurements in May of that year revealed a substantial increase in rates of water flux. Mean body mass further increased to 332.6 +/- 8.5 g and TBW averaged 61.8 +/- 1.1%. Water turnover rates were significantly elevated when compared with April of the previous year with an influx of 112.5 +/- 7.3 and an efflux of 119.0 +/- 7.6 mL (kg0.82 day)-1 respectively (both P = 0.001). Rates of sodium turnover, however, were only slightly lower at 3.6 +/- 0.5 and 4.1 +/- 0.5 mmol (kg day)-1 for influx and efflux respectively (P = 0.056 for influx only), suggesting a slight decrease in the average sodium content of the diet. The volume of water required to maintain hygric balance was estimated by regression analysis at 26.7 mL day-1 [=88.3 mL (kg0.82 day)-1] in November 1990, and 33-9 mL day-1 [=85.2 mL (kg0.82 day)-1] in May 1992, following rain. The FMR of eight bandicoots was very significantly elevated to 1.39 +/- 0.23 mL CO2 (g h)-1 after rain, which is substantially higher than even the FMR of 0.91 +/- 0.07 mL CO2(g h)-1, or 644 kJ day-1, reported for the closely related southern brown bandicoot (Isoodon obesulus) studied in the region of Perth by Nagy et al. (1991). Turnover rates of water and sodium for two rodent species, the Barrow Island mouse (Pseudomys nanus) and the rock rat (Zyzomys argurus), were very similar to those recorded for golden bandicoots in the dry period, but FMRs were a little higher at 0.80 +/- 0.26 and 0.59 +/- 0-36 mL CO2(g h)-l respectively. The FMR of Barrow Island mice increased very significantly to a mean of 2.73 +/- 0.50 mL CO2(g h)-l after rain, but rock rats were not caught at this time. The data document the impressive ability of these mammals to avail themselves of extremely limited resources and maintain physiological homoiostasis under conditions of extreme aridity.



1989 ◽  
Vol 16 (5) ◽  
pp. 501 ◽  
Author(s):  
B Green ◽  
D King ◽  
a Bradley

The metabolic rates and water fluxes of free-living Phascogale calura were determined with doubly labelled water. The highest rates of water influx occurred in October, when the adult population consisted of lactating females only. The highest metabolic rates occurred in June, and the lowest rates of both water influx and metabolism occurred in March. The value of the data in designing toxic baits for the control of foxes or other exotic pests, while minimising the hazard to phascogales of accidental poisoning, is discussed.



1990 ◽  
Vol 38 (1) ◽  
pp. 1 ◽  
Author(s):  
WJ Foley ◽  
JC Kehl ◽  
KA Nagy ◽  
IR Kaplan ◽  
AC Borsboom

Water flux and metabolic rate were measured using a low-level, doubly-labelled water technique in eight free-living greater gliders, Petauroides volans which were maintaining constant body masses at about 1 kg in eucalypt forest near Maryborough, Queensland. Mean water influx was 88.0�3.2 mL d-' and mean metabolic rate was 25.1 L C02 d-' or 520 kJ d-'. These arboreal folivores have field metabolic rates and water influx rates that are 96% and 71% respectively of those predicted for a herbivorous marsupial of their body mass. Assuming that faecal energy losses were 43% of gross energy intakes and that urinary energy losses were 15% of digestible energy intakes, the gross energy intake of the animals was about 1130 kJ d-'. Animals would need to eat between 45 and 50 g of dry matter daily to satisfy these energy requirements. Based on these results, a preliminary energy budget for greater gliders has been proposed.



Sign in / Sign up

Export Citation Format

Share Document