scholarly journals Predaceous diving beetles (Coleoptera : Dytiscidae) may affect the success of amphibian conservation efforts

2018 ◽  
Vol 66 (6) ◽  
pp. 352 ◽  
Author(s):  
Jose W. Valdez

The role of invertebrate predation in shaping vertebrate communities is often overlooked. This is evident with predaceous diving beetles (Coleoptera: Dytiscidae), which are often the top predator in many aquatic freshwater habitats. During weekly monitoring of a reintroduction for an endangered frog, a group of a dozen adult diving beetles were encountered attacking and quickly dismembering and consuming a tadpole. A single adult diving beetle was also discovered burrowing its head inside and consuming a tadpole approximately 3–4 times its size by seemingly piercing its prey to suck out its liquefied remains. This is in contrast with the well known behaviour of adult dytiscids, which involves tearing prey into small pieces with their chewing mouthparts. Although dytiscids are known to occasionally consume vertebrates such as tadpoles, adults are typically considered scavengers, and this communal predatory behaviour and feeding method have not previously been documented. Moreover, over 80% of the tadpoles in the monitored site were found in ponds with no beetles and despite representing only a quarter of all ponds, half of the tadpoles across the landscape were in ponds free of diving beetles, demonstrating a possible influence of diving beetles on tadpoles. These observations may have implications for amphibian conservation since management efforts are not typically concerned with naturally occurring ubiquitous threats such as those from small invertebrate predators, as it has rarely been observed in nature. Although amphibian conservation plans expect some losses from natural predation, diving beetles may affect conservation efforts such as captive breeding and reintroductions with populations where every individual is critical to success.

Author(s):  
Jose Valdez

The role of invertebrate predation in shaping vertebrate communities is often underestimated or overlooked, which has resulted in the lack of their recognition in conservation planning. This is evident with predaceous diving beetles (Coleoptera: Dytiscidae) which are often the top predator in many aquatic freshwater habitats. During weekly monitoring of a compensatory habitat reintroduction for an endangered frog species, a group of a dozen adult diving beetles were encountered attacking and quickly dismembering and consuming a tadpole. A single adult diving beetle was also discovered burrowing its head deep inside and consuming a tadpole approximately three to four times its size. Although Dytiscidae are known to occasionally consume vertebrates such as tadpoles, adults are typically considered scavengers, and this communal predatory behavior and feeding method have not been previously documented. Besides these interesting novel behaviors, these observations may have implications for amphibian conservation since management efforts are not typically concerned with naturally occurring ubiquitous threats such as those from small invertebrate predators, as it is rarely been observed in nature. However, this may be perhaps due to their ability to consume prey rapidly, especially if predating in groups. Although amphibian conservation plans expect some losses from natural predation, diving beetles may affect conservation efforts such as captive breeding and reintroductions with populations already on the threshold of extinction and where every individual critical to success.


Author(s):  
Jose Valdez

During weekly monitoring of a compensatory habitat reintroduction for an endangered frog species, a group of a dozen adult diving beetles (Coleoptera: Dytiscidae) were encountered attacking and quickly dismembering and consuming a tadpole. A single adult diving beetle was also discovered burrowing its head deep inside and consuming a tadpole approximately three to four times its size. Although Dytiscidae are known to occasionally consume vertebrates such as tadpoles, adults are typically considered scavengers, and this communal predatory behavior and feeding method have not been previously documented. Besides these interesting novel behaviors, these observations may have implications for amphibian conservation since management efforts are not typically concerned with naturally occurring ubiquitous threats such as those from small invertebrate predators, as it is rarely been observed in nature. However, this may be perhaps due their ability to consume prey rapidly, especially if working in packs. Although amphibian conservation plans always expect some losses from natural predation, diving beetles may seriously affect conservation efforts such as captive breeding and reintroductions with populations already on the threshold of extinction and where every individual critical to success.


Author(s):  
Jose Valdez

During weekly monitoring of a compensatory habitat reintroduction for an endangered frog species, a group of a dozen adult diving beetles (Coleoptera: Dytiscidae) were encountered attacking and quickly dismembering and consuming a tadpole. A single adult diving beetle was also discovered burrowing its head deep inside and consuming a tadpole approximately three to four times its size. Although Dytiscidae are known to occasionally consume vertebrates such as tadpoles, adults are typically considered scavengers, and this communal predatory behavior and feeding method have not been previously documented. Besides these interesting novel behaviors, these observations may have implications for amphibian conservation since management efforts are not typically concerned with naturally occurring ubiquitous threats such as those from small invertebrate predators, as it is rarely been observed in nature. However, this may be perhaps due their ability to consume prey rapidly, especially if working in packs. Although amphibian conservation plans always expect some losses from natural predation, diving beetles may seriously affect conservation efforts such as captive breeding and reintroductions with populations already on the threshold of extinction and where every individual critical to success.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1515
Author(s):  
Marissa L. Parrott ◽  
Leanne V. Wicker ◽  
Amanda Lamont ◽  
Chris Banks ◽  
Michelle Lang ◽  
...  

Modern zoos are increasingly taking a leading role in emergency management and wildlife recovery. In the face of climate change and the predicted increase in frequency and magnitude of catastrophic events, zoos provide specialised expertise to assist wildlife welfare and endangered species recovery. In the 2019–2020 Australian bushfire season, now called Australia’s Black Summer, a state government-directed response was developed, assembling specialised individuals and organisations from government, non-government organisations, research institutions, and others. Here, we detail the role of Zoos Victoria staff in wildlife triage and welfare, threatened species evacuation and recovery, media and communications, and fundraising during and after the fires. We share strategies for future resilience, readiness, and the ability to mobilise quickly in catastrophic events. The development of triage protocols, emergency response kits, emergency enclosures, and expanded and new captive breeding programs is underway, as are programs for care of staff mental health and nature-based community healing for people directly affected by the fires. We hope this account of our response to one of the greatest recent threats to Australia’s biodiversity, and steps to prepare for the future will assist other zoos and wildlife organisations around the world in preparations to help wildlife before, during, and after catastrophic events.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Rosabelle Boswell

This paper considers the role of art in ocean conservation. Drawing on the presentations and work of two artists featured in the One Ocean Hub Art and Emotions webinar hosted during the UN World Ocean Week, the paper focuses specifically on the sensorial nature of art and of human beings and the role that art can play in advancing ocean conservation. The main argument offered is that ocean conservation plans and policies should consider the importance of humans to ocean conservation, the importance of human artistic endeavour to ocean activism and finally the importance of the sensory to human experience. Acknowledging and recognising the importance of human sensory experience in relation to the sea, can nuance existing discourses of ocean use and benefits, revealing human priorities and potential obstacles to conservation. Third, by leveraging human sensory expression through art, ocean conservation advocates may be able to refine and produce more effective communication for ocean conservation. Finally, recognising the sensory (and the artistic) is key to reorienting humanity as it enters a post-anthropocentric age, marked by dramatic ecological change.


1992 ◽  
Vol 15 (1) ◽  
pp. 55
Author(s):  
S.M. Pellis ◽  
J.E. erlely R and Nelson

The predatory behavior of captive quolls (n= 13) on mice was videotaped and analysed . The role of vision was studied by comparing the behaviours of fully blind, and one-eyed quolls to fully sighted ones. The role of tactile inputs via the vibrissae was studied by vibrissae amputation in both fully blind and fully sighted quolls. The data indicated that vision plays a role in both locating and attacking prey, although in its absence, other sensory stimuli can be substituted. Vibrissae were found to play a role in orienting the attack, although in their absence, either visual or more direct tactile contact (eg, nose or forepaws) could be substituted for this function. Once the mice were bitten, neither vision nor vibrissae appeared to be involved in orienting the prey for delivery of the killing bite.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2986
Author(s):  
Joan Manubens ◽  
Oriol Comas ◽  
Núria Valls ◽  
Lluís Benejam

The strong decline of freshwater fish species in Europe implies that further ex-situ conservation plans should be implemented in the near future. The present study reflects our experience with the Pyrenean sculpin (Cottus hispaniolensis Bacescu-Mester, 1964)—a small cottid endemic to the Hispano-French Garona River basin. In recent years, the Spanish Pyrenean sculpin population has reached a limit situation. Because of that, the non-profit association ADEFFA—with support from the public administration—started the first captive breeding program for this species in 2006. Fourteen years later, this study presents the results and evaluates the different steps of the program, with the aim of discussing and improving the ex-situ conservation plans for this and other cold freshwater species. There is a description and a comparison between six consecutive phases during the captive breeding process: nesting behaviour, courtship, egg fixation, parental care (incubation), hatching and survival during juvenile development. The purposes of this project are to: (1) identify the most determining phases for a successful captive breeding; (2) identify the factors that had a major influence to the success of the critical phases; and (3) increase the number of the offspring. This study is based on thirty-three wild individuals collected from Garona River (Val d’Aran, Spanish Pyrenees). During the program, twelve couples spawned in captive conditions, with around 2300 eggs laid. Eight couples bred successfully, with 751 hatched individuals and 608 juveniles reared. The analysis of each step of the captive breeding does not reveal significant differences between phases, so it can be concluded that they are all critical at the same level. In the literature, similar study-cases of captive breeding programs identify incubation and survival phases as the most critical. Consequently, the management made for this project has probably allowed to overcome in part the main impediments described in other similar programs.


Chemoecology ◽  
2020 ◽  
Vol 30 (4) ◽  
pp. 139-146
Author(s):  
Emily R. Burdfield-Steel ◽  
Jutta M. Schneider ◽  
Johanna Mappes ◽  
Susanne Dobler

Abstract Insects live in a dangerous world and may fall prey to a wide variety of predators, encompassing multiple taxa. As a result, selection may favour defences that are effective against multiple predator types, or target-specific defences that can reduce predation risk from particular groups of predators. Given the variation in sensory systems and hunting tactics, in particular between vertebrate and invertebrate predators, it is not always clear whether defences, such as chemical defences, that are effective against one group will be so against another. Despite this, the majority of research to date has focused on the role of a single predator species when considering the evolution of defended prey. Here we test the effectiveness of the chemical defences of the wood tiger moth, a species previously shown to have defensive chemicals targeted towards ants, against a common invertebrate predator: spiders. We presented both live moths and artificial prey containing their defensive fluids to female Trichonephila senegalensis and recorded their reactions. We found that neither of the moth’s two defensive fluids were able to repel the spiders, and confirmed that methoxypyrazines, a major component of the defences of both the wood tiger moth and many insect species, are ineffective against web-building spiders. Our results highlight the variability between predator taxa in their susceptibility to chemical defences, which can in part explain the vast variation in these chemicals seen in insects, and the existence of multiple defences in a single species.


2017 ◽  
Vol 20 (2) ◽  
pp. 126-127
Author(s):  
T. E. Martin ◽  
A. Biega ◽  
D. Greenberg ◽  
A. O. Mooers

Author(s):  
William B. Sherwood ◽  
Dilini M. Kothalawala ◽  
Latha Kadalayil ◽  
Susan Ewart ◽  
Hongmei Zhang ◽  
...  

Several small studies have shown associations between breastfeeding and genome-wide DNA methylation (DNAm). We performed a comprehensive Epigenome-Wide Association Study (EWAS) to identify associations between breastfeeding and DNAm patterns in childhood. We analysed DNAm data from the Isle of Wight Birth Cohort at birth, 10, 18 and 26 years. The feeding method was categorized as breastfeeding duration >3 months and >6 months, and exclusive breastfeeding duration >3 months. EWASs using robust linear regression were performed to identify differentially methylated positions (DMPs) in breastfed and non-breastfed children at age 10 (false discovery rate of 5%). Differentially methylated regions (DMRs) were identified using comb-p. The persistence of significant associations was evaluated in neonates and individuals at 18 and 26 years. Two DMPs, in genes SNX25 and LINC00840, were significantly associated with breastfeeding duration >6 months at 10 years and was replicated for >3 months of exclusive breastfeeding. Additionally, a significant DMR spanning the gene FDFT1 was identified in 10-year-old children who were exposed to a breastfeeding duration >3 months. None of these signals persisted to 18 or 26 years. This study lends further support for a suggestive role of DNAm in the known benefits of breastfeeding on a child’s future health.


Sign in / Sign up

Export Citation Format

Share Document