scholarly journals Use of RNA interference in Drosophila S2 cells to identify host pathways controlling compartmentalization of an intracellular pathogen

2005 ◽  
Vol 102 (38) ◽  
pp. 13646-13651 ◽  
Author(s):  
L. W. Cheng ◽  
J. P. M. Viala ◽  
N. Stuurman ◽  
U. Wiedemann ◽  
R. D. Vale ◽  
...  
2005 ◽  
Vol 171 (2) ◽  
pp. 229-240 ◽  
Author(s):  
Gohta Goshima ◽  
François Nédélec ◽  
Ronald D. Vale

During the formation of the metaphase spindle in animal somatic cells, kinetochore microtubule bundles (K fibers) are often disconnected from centrosomes, because they are released from centrosomes or directly generated from chromosomes. To create the tightly focused, diamond-shaped appearance of the bipolar spindle, K fibers need to be interconnected with centrosomal microtubules (C-MTs) by minus end–directed motor proteins. Here, we have characterized the roles of two minus end–directed motors, dynein and Ncd, in such processes in Drosophila S2 cells using RNA interference and high resolution microscopy. Even though these two motors have overlapping functions, we show that Ncd is primarily responsible for focusing K fibers, whereas dynein has a dominant function in transporting K fibers to the centrosomes. We also report a novel localization of Ncd to the growing tips of C-MTs, which we show is mediated by the plus end–tracking protein, EB1. Computer modeling of the K fiber focusing process suggests that the plus end localization of Ncd could facilitate the capture and transport of K fibers along C-MTs. From these results and simulations, we propose a model on how two minus end–directed motors cooperate to ensure spindle pole coalescence during mitosis.


2009 ◽  
Vol 187 (3) ◽  
pp. 327-334 ◽  
Author(s):  
Anaïs Bouissou ◽  
Christel Vérollet ◽  
Aureliana Sousa ◽  
Paula Sampaio ◽  
Michel Wright ◽  
...  

γ-Tubulin is critical for the initiation and regulation of microtubule (MT) assembly. In Drosophila melanogaster, it acts within two main complexes: the γ-tubulin small complex (γ-TuSC) and the γ-tubulin ring complex (γ-TuRC). Proteins specific of the γ-TuRC, although nonessential for viability, are required for efficient mitotic progression. Until now, their role during interphase remained poorly understood. Using RNA interference in Drosophila S2 cells, we show that the γ-TuRC is not critical for overall MT organization. However, depletion of any component of this complex results in an increase of MT dynamics. Combined immunofluorescence and live imaging analysis allows us to reveal that the γ-TuRC localizes along interphase MTs and that distal γ-tubulin spots match with sites of pause or rescue events. We propose that, in addition to its role in nucleation, the γ-TuRC associated to MTs may regulate their dynamics by limiting catastrophes.


2008 ◽  
Vol 19 (10) ◽  
pp. 4051-4061 ◽  
Author(s):  
Soo-Jung Lee ◽  
Renny Feldman ◽  
Patrick H. O'Farrell

In addition to its central role in energy production, oxygen has pervasive regulatory actions. Hypoxia (oxygen limitation) triggers the shutdown of major cellular processes, including gene expression. We carried out a genome-wide RNA interference (RNAi) screen in Drosophila S2 cells for functions required to down-regulate translation during hypoxia. RNAi knockdown of specific genes allowed induction of a green fluorescent protein (GFP) reporter gene and continued protein synthesis during hypoxia. Among the identified genes, Tsc1 and Tsc2, which together form the tuberose sclerosis complex that negatively regulates target of rapamycin (TOR) kinase, gave an especially strong effect. This finding is consistent with the involvement of TOR in promoting translation. Another gene required for efficient inhibition of protein translation during hypoxia, the protein tyrosine phosphatase 61F (Ptp61F), down-regulates TOR activity under hypoxia. Lack of Ptp61F or Tsc2 improves cell survival under prolonged hypoxia in a TOR-dependent manner. Our results identify Ptp61F as a novel modulator of TOR activity and suggest that its function during hypoxia contributes to the down-regulation of protein synthesis.


2003 ◽  
Vol 162 (2) ◽  
pp. 185-198 ◽  
Author(s):  
Vangelis Kondylis ◽  
Catherine Rabouille

Here, we describe that depletion of the Drosophila homologue of p115 (dp115) by RNA interference in Drosophila S2 cells led to important morphological changes in the Golgi stack morphology and the transitional ER (tER) organization. Using conventional and immunoelectron microscopy and confocal immunofluorescence microscopy, we show that Golgi stacks were converted into clusters of vesicles and tubules, and that the tERs (marked by Sec23p) lost their focused organization and were now dispersed throughout the cytoplasm. However, we found that this morphologically altered exocytic pathway was nevertheless largely competent in anterograde protein transport using two different assays. The effects were specific for dp115. Depletion of the Drosophila homologues of GM130 and syntaxin 5 (dSed5p) did not lead to an effect on the tER organization, though the Golgi stacks were greatly vesiculated in the cells depleted of dSed5p. Taken together, these studies suggest that dp115 could be implicated in the architecture of both the Golgi stacks and the tER sites.


Glycobiology ◽  
2008 ◽  
Vol 19 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Y. K. Kim ◽  
K. R. Kim ◽  
D. G. Kang ◽  
S. Y. Jang ◽  
Y. H. Kim ◽  
...  

2009 ◽  
Vol 20 (18) ◽  
pp. 4083-4090 ◽  
Author(s):  
Pascale F. Dijkers ◽  
Patrick H. O'Farrell

Befitting oxygen's key role in life's processes, hypoxia engages multiple signaling systems that evoke pervasive adaptations. Using surrogate genetics in a powerful biological model, we dissect a poorly understood hypoxia-sensing and signal transduction system. Hypoxia triggers NO-dependent accumulation of cyclic GMP and translocation of cytoplasmic GFP-Relish (an NFκB/Rel transcription factor) to the nucleus in Drosophila S2 cells. An enzyme capable of eliminating NO interrupted signaling specifically when it was targeted to the mitochondria, arguing for a mitochondrial NO signal. Long pretreatment with an inhibitor of nitric oxide synthase (NOS), L-NAME, blocked signaling. However, addition shortly before hypoxia was without effect, suggesting that signaling is supported by the prior action of NOS and is independent of NOS action during hypoxia. We implicated the glutathione adduct, GSNO, as a signaling mediator by showing that overexpression of the cytoplasmic enzyme catalyzing its destruction, GSNOR, blocks signaling, whereas knockdown of this activity caused reporter translocation in the absence of hypoxia. In downstream steps, cGMP accumulated, and calcium-dependent signaling was subsequently activated via cGMP-dependent channels. These findings reveal the use of unconventional steps in an NO pathway involved in sensing hypoxia and initiating signaling.


Sign in / Sign up

Export Citation Format

Share Document