scholarly journals Human prion proteins with pathogenic mutations share common conformational changes resulting in enhanced binding to glycosaminoglycans

2007 ◽  
Vol 104 (18) ◽  
pp. 7546-7551 ◽  
Author(s):  
Shaoman Yin ◽  
Nancy Pham ◽  
Shuiliang Yu ◽  
Chaoyang Li ◽  
Poki Wong ◽  
...  

Mutation in the prion gene PRNP accounts for 10–15% of human prion diseases. However, little is known about the mechanisms by which mutant prion proteins (PrPs) cause disease. Here we investigated the effects of 10 different pathogenic mutations on the conformation and ligand-binding activity of recombinant human PrP (rPrP). We found that mutant rPrPs react more strongly with N terminus-specific antibodies, indicative of a more exposed N terminus. The N terminus of PrP contains a glycosaminoglycan (GAG)-binding motif. Binding of GAG is important in prion disease. Accordingly, all mutant rPrPs bind more GAG, and GAG promotes the aggregation of mutant rPrPs more efficiently than wild-type recombinant normal cellular PrP (rPrPC). Furthermore, point mutations in PRNP also cause conformational changes in the region between residues 109 and 136, resulting in the exposure of a second, normally buried, GAG-binding motif. Importantly, brain-derived PrP from transgenic mice, which express a pathogenic mutant with nine extra octapeptide repeats, also binds more strongly to GAG than wild-type PrPC. Thus, several rPrPs with distinct pathogenic mutations have common conformational changes, which enhance binding to GAG. These changes may contribute to the pathogenesis of inherited prion diseases.

2004 ◽  
Vol 78 (22) ◽  
pp. 12657-12664 ◽  
Author(s):  
Yu Tian ◽  
Dawei Li ◽  
Jean Dahl ◽  
John You ◽  
Thomas Benjamin

ABSTRACT A polyomavirus mutant isolated by the tumor host range selection procedure (19) has a three-amino-acid deletion (Δ2-4) in the common N terminus of the T antigens. To search for a cellular protein bound by wild-type but not the mutant T antigen(s), a yeast two-hybrid screen of a mouse embryo cDNA library was carried out with a bait of wild-type small T antigen (sT) fused N terminally to the DNA-binding domain of Gal4. TAZ, a transcriptional coactivator with a WW domain and PDZ-binding motif (17), was identified as a binding partner. TAZ bound in vivo to all three T antigens with different apparent affinities estimated as 1:7:100 (large T antigen [lT]:middle T antigen [mT]:sT). The Δ2-4 mutant T antigens showed no detectable binding. The sT and mT of the host range transformation-defective (hr-t) mutant NG59 with an alteration in the common sT/mT region (179 D→NI) and a normal N terminus also failed to bind TAZ, while the unaltered lT bound but with reduced affinity compared to that seen in a wild-type virus infection. The WW domain but not the PDZ-binding motif of TAZ was essential for T antigen binding. The Δ2-4 mutant was defective in viral DNA replication. Forced overexpression of TAZ blocked wild-type DNA replication in a manner dependent on the binding site for the polyomavirus enhancer-binding protein 2α. Wild-type polyomavirus T antigens effectively block transactivation by TAZ. The functional significance of TAZ interactions with polyomavirus T antigens is discussed.


2007 ◽  
Vol 81 (15) ◽  
pp. 7833-7843 ◽  
Author(s):  
Joshua C. Grieger ◽  
Jarrod S. Johnson ◽  
Brittney Gurda-Whitaker ◽  
Mavis Agbandje-McKenna ◽  
R. Jude Samulski

ABSTRACT Over the past 2 decades, significant effort has been dedicated to the development of adeno-associated virus (AAV) as a vector for human gene therapy. However, understanding of the virus with respect to the functional domains of the capsid remains incomplete. In this study, the goal was to further examine the role of the unique Vp1 N terminus, the N terminus plus the recently identified nuclear localization signal (NLS) (J. C. Grieger, S. Snowdy, and R. J. Samulski, J. Virol 80:5199-5210, 2006), and the virion pore at the fivefold axis in infection. We generated two Vp1 fusion proteins (Vp1 and Vp1NLS) linked to the 8-kDa chemokine domain of rat fractalkine (FKN) for the purpose of surface exposure upon assembly of the virion, as previously described (K. H. Warrington, Jr., O. S. Gorbatyuk, J. K. Harrison, S. R. Opie, S. Zolotukhin, and N. Muzyczka, J. Virol 78:6595-6609, 2004). The unique Vp1 N termini were found to be exposed on the surfaces of these capsids and maintained their phospholipase A2 (PLA2) activity, as determined by native dot blot Western and PLA2 assays, respectively. Incorporation of the fusions into AAV type 2 capsids lacking a wild-type Vp1, i.e., Vp2/Vp3 and Vp3 capsid only, increased infectivity by 3- to 5-fold (Vp1FKN) and 10- to 100-fold (Vp1NLSFKN), respectively. However, the surface-exposed fusions did not restore infectivity to AAV virions containing mutations at a conserved leucine (Leu336Ala, Leu336Cys, or Leu336Trp) located at the base of the fivefold pore. EM analyses suggest that Leu336 may play a role in global structural changes to the virion directly impacting downstream conformational changes essential for infectivity and not only have local effects within the pore, as previously suggested.


2003 ◽  
Vol 185 (13) ◽  
pp. 3878-3887 ◽  
Author(s):  
Jianping Yu ◽  
Gaozhong Shen ◽  
Tao Wang ◽  
Donald A. Bryant ◽  
John H. Golbeck ◽  
...  

ABSTRACT In previous work, some members of our group isolated mutant strains of Synechocystis sp. strain PCC 6803 in which point mutations had been inserted into the psaC gene to alter the cysteine residues to the FA and FB iron-sulfur clusters in the PsaC subunit of photosystem I (J. P. Yu, I. R. Vassiliev, Y. S. Jung, J. H. Golbeck, and L. McIntosh, J. Biol. Chem. 272:8032-8039, 1997). These mutant strains did not grow photoautotrophically due to suppressed levels of chlorophyll a and photosystem I. In the results described here, we show that suppressor mutations produced strains that are capable of photoautotrophic growth at moderate light intensity (20 μmol m−2 s−1). Two separate suppressor strains of C14SPsaC, termed C14SPsaC-R62 and C14SPsaC-R18, were studied and found to have mutations in a previously uncharacterized open reading frame of the Synechocystis sp. strain PCC 6803 genome named sll0088. C14SPsaC-R62 was found to substitute Pro for Arg at residue 161 as the result of a G482→C change in sll0088, and C14SPsaC-R18 was found to have a three-amino-acid insertion of Gly-Tyr-Phe following Cys231 as the result of a TGGTTATTT duplication at T690 in sll0088. These suppressor strains showed near-wild-type levels of chlorophyll a and photosystem I, yet the serine oxygen ligand to FB was retained as shown by the retention of the S ≥ 3/2 spin state of the [4Fe-4S] cluster. The inactivation of sll0088 by insertion of a kanamycin resistance cartridge in the primary C14SPsaC mutant produced an engineered suppressor strain capable of photoautotrophic growth. There was no difference in psaC gene expression or in the amount of PsaC protein assembled in thylakoids between the wild type and an sll0088 deletion mutant. The sll0088 gene encodes a protein predicted to be a transcriptional regulator with sequence similarities to transcription factors in other prokaryotic and eukaryotic organisms, including Arabidopsis thaliana. The protein contains a typical helix-turn-helix DNA-binding motif and can be classified as a negative regulator by phylogenetic analysis. This suggests that the product of sll0088 has a role in regulating the biogenesis of photosystem I.


1993 ◽  
Vol 122 (6) ◽  
pp. 1253-1265 ◽  
Author(s):  
GW Kemble ◽  
YI Henis ◽  
JM White

We investigated the influence of a glycosylphosphatidylinositol (GPI) anchor on the ectodomain of the influenza hemagglutinin (HA) by replacing the wild type (wt) transmembrane and cytoplasmic domains with a GPI lipid anchor. GPI-anchored HA (GPI-HA) was transported to the cell surface with equal efficiency and at the same rate as wt-HA. Like wt-HA, cell surface GPI-HA, and its ectodomain released with the enzyme PI-phospholipase C (PI-PLC), were 9S trimers. Compared to wt-HA, the GPI-HA ectodomain underwent additional terminal oligosaccharide modifications; some of these occurred near the receptor binding pocket and completely inhibited the ability of GPI-HA to bind erythrocytes. Growth of GPI-HA-expressing cells in the presence of the mannosidase I inhibitor deoxymannojirimycin (dMM) abrogated the differences in carbohydrate modification and restored the ability of GPI-HA to bind erythrocytes. The ectodomain of GPI-HA produced from cells grown in the presence or absence of dMM underwent characteristic low pH-induced conformational changes (it released its fusion peptides and became hydrophobic and proteinase sensitive) but at 0.2 and 0.4 pH units higher than wt-HA, respectively. These results demonstrate that although GPI-HA forms a stable trimer with characteristics of the wt, its structure is altered such that its receptor binding activity is abolished. Our results show that transmembrane and GPI-anchored forms of the same ectodomain can exhibit functionally important differences in structure at a great distance from the bilayer.


2003 ◽  
Vol 77 (17) ◽  
pp. 9221-9231 ◽  
Author(s):  
Miri Yoon ◽  
Anna Zago ◽  
Deepak Shukla ◽  
Patricia G. Spear

ABSTRACT Multiple cell surface molecules (herpesvirus entry mediator [HVEM], nectin-1, nectin-2, and 3-O-sulfated heparan sulfate) can serve as entry receptors for herpes simplex virus type 1 (HSV-1) or HSV-2 and also as receptors for virus-induced cell fusion. Viral glycoprotein D (gD) is the ligand for these receptors. A previous study showed that HVEM makes contact with HSV-1 gD at regions within amino acids 7 to 15 and 24 to 32 at the N terminus of gD. In the present study, amino acid substitutions and deletions were introduced into the N termini of HSV-1 and HSV-2 gDs to determine the effects on interactions with all of the known human and mouse entry/fusion receptors, including mouse HVEM, for which data on HSV entry or cell fusion were not previously reported. A cell fusion assay was used to assess functional activity of the gD mutants with each entry/fusion receptor. Soluble gD:Fc hybrids carrying each mutation were tested for the ability to bind to cells expressing the entry/fusion receptors. We found that deletions overlapping either or both of the HVEM contact regions, in either HSV-1 or HSV-2 gD, severely reduced cell fusion and binding activity with all of the human and mouse receptors except nectin-1. Amino acid substitutions described previously for HSV-1 (L25P, Q27P, and Q27R) were individually introduced into HSV-2 gD and, for both serotypes, were found to be without effect on cell fusion and the binding activity for nectin-1. Each of these three substitutions in HSV-1 gD enhanced fusion with cells expressing human nectin-2 (ordinarily low for wild-type HSV-1 gD), but the same substitutions in HSV-2 gD were without effect on the already high level of cell fusion observed with the wild-type protein. The Q27P or Q27R substitution in either HSV-1 and HSV-2 gD, but not the L25P substitution, significantly reduced cell fusion and binding activity for both human and mouse HVEM. Each of the three substitutions in HSV-1 gD, as well as the deletions mentioned above, reduced fusion with cells bearing 3-O-sulfated heparan sulfate. Thus, the N terminus of HSV-1 or HSV-2 gD is not necessary for functional interactions with nectin-1 but is necessary for all of the other receptors tested here. The sequence of the N terminus determines whether nectin-2 or 3-O-sulfated heparan sulfate, as well as HVEM, can serve as entry/fusion receptors.


2016 ◽  
Author(s):  
Yolanda Olmos ◽  
Anna Perdrix ◽  
Jeremy G Carlton

AbstractAmongst other cellular functions, the Endosomal Sorting Complex Required for Transport-III (ESCRT-III) machinery controls nuclear envelope (NE) reformation during mitotic exit by sealing holes in the reforming NE. ESCRT-III also acts to repair this organelle upon migration-induced rupture. The ESCRT-III component CHMP7 is responsible for recruitment of ESCRT-III to the NE. Here, we show that the N-terminus of CHMP7, comprising tandem Winged Helix (WH)-domains, is a membrane-binding module. This activity allows CHMP7 to bind to the Endoplasmic Reticulum (ER), an organelle continuous with the NE, and provides a platform to direct NE-recruitment of ESCRT-III during mitotic exit. Point mutations that disrupt membrane-binding prevent CHMP7 localising to the ER and its subsequent enrichment at the reforming NE. These mutations prevent both assembly of downstream ESCRT-III components at the reforming NE and proper establishment of post-mitotic nucleo-cytoplasmic compartmentalisation. These data identify a novel membrane-binding activity within an ESCRT-III subunit that is essential for post-mitotic nuclear regeneration.One Sentence SummaryCHMP7’s atypical N-terminus is a membrane-binding module that allows assembly and function of ESCRT-III at the nuclear envelope during mitotic exit.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3007-3007
Author(s):  
Leopoldo Laricchia-Robbio ◽  
Donglan Li ◽  
Raffaella Fazzina ◽  
Soumen Chakraborty ◽  
Maher Abdul Hay ◽  
...  

Abstract EVI1 is an aggressive nuclear oncoprotein deregulated by recurring chromosomal abnormalities in acute myeloid leukemia and myelodysplastic syndrome. This protein has two Zn finger domains containing 7 motifs at the N-terminus and 3 motifs at the C-terminus. The expression of this gene is a very poor prognostic marker and is associated with diseases characterized by erythroid and megakaryocytic defects. We have recently shown that the forced expression of EVI1 in murine bone marrow results in a fatal disease with features characteristic of MDS, including fatal dyserythropoiesis, dysmegakaryopoiesis, and anemia. These lineages are regulated by the transcription factor GATA-1, a DNA-binding protein that in addition to erythrocytes and megakaryocytes exerts a strict control also on the differentiation of mast cells and eosinophils, on the basis of its expression and association with specific partners. In the present study, we used biochemical assays and in vitro culture to show that GATA-1 and the N-terminus of EVI1 are involved in the formation of a protein complex that is unable to regulate efficiently GATA-1-dependent promoters in reporter gene assays. EMSA studies with a GATA-1-specific probe indicate that EVI1 does not recognize and bind to the DNA probe but disrupts the DNA-binding of GATA-1. By deletion analysis and point mutations, we mapped the interaction between the proteins to two motifs in the proximal Zn finger domain of EVI1 and to the C-terminus Zn finger of GATA-1. Cys to Ala mutations in the two EVI1 motifs abrogate the interaction and restore the response of a promoter in reporter gene assays. We propose that the association between EVI1 and the DNA-binding motif of GATA-1 impairs efficient promoter binding by GATA-1 and the regulation of erythroid and megakaryocytic lineage. There studies suggest that the interaction surface between the two proteins could be an attractive target for the development of competing small molecules as a treatment in EVI1-associated leukemia.


2004 ◽  
Vol 380 (2) ◽  
pp. 401-407 ◽  
Author(s):  
Stephanie J. BARTON ◽  
Mark A. TRAVIS ◽  
Janet A. ASKARI ◽  
Patrick A. BUCKLEY ◽  
Susan E. CRAIG ◽  
...  

The ligand-binding activity of integrins is regulated by shape changes that convert these receptors from a resting (or inactive) state to an active state. However, the precise conformational changes that take place in head region of integrins (the site of ligand binding) during activation are not well understood. The portion of the integrin β subunit involved in ligand recognition contains a von Willebrand factor type A domain, which comprises a central β-sheet surrounded by seven α helices (α1–α7). Using site-directed mutagenesis, we show here that point mutation of hydrophobic residues in the α1 and α7 helices (which would be predicted to increase the mobility of these helices) markedly increases the ligand-binding activity of both integrins α5β1 and α4β1. In contrast, mutation of a hydrophilic residue near the base of the α1 helix decreases activity and also suppresses exposure of activation epitopes on the underlying hybrid domain. Our results provide new evidence that shifts of the α1 and α7 helices are involved in activation of the A domain. Although these changes are grossly similar to those defined in the A domains found in some integrin α subunits, movement of the α1 helix appears to play a more prominent role in βA domain activation.


1994 ◽  
Vol 14 (4) ◽  
pp. 2438-2446
Author(s):  
J McGuire ◽  
M L Whitelaw ◽  
I Pongratz ◽  
J A Gustafsson ◽  
L Poellinger

In response to dioxin, the nuclear basic helix-loop-helix (bHLH) dioxin receptor forms a complex with the bHLH partner factor Arnt that regulates target gene transcription by binding to dioxin-responsive sequence motifs. Previously, we have demonstrated that the latent form of dioxin receptor present in extracts from untreated cells is stably associated with molecular chaperone protein hsp90, and Arnt is not a component of this complex. Here, we used a coimmunoprecipitation assay to demonstrate that the in vitro-translated dioxin receptor, but not Arnt, is stably associated with hsp90. Although it showed ligand-binding activity, the in vitro-translated dioxin receptor failed to dissociate from hsp90 upon exposure to ligand. Addition of a specific fraction from wild-type hepatoma cells, however, to the in vitro-expressed receptor promoted dioxin-dependent release of hsp90. This stimulatory effect was mediated via the bHLH dimerization and DNA-binding motif of the receptor. Moreover, ligand-dependent release of hsp90 from the receptor was not promoted by fractionated cytosolic extracts from mutant hepatoma cells which are deficient in the function of bHLH dioxin receptor partner factor Arnt. Thus, our results provide a novel model for regulation of bHLH factor activity and suggest that derepression of the dioxin receptor by ligand-induced release of hsp90 may require bHLH-mediated concomitant recruitment of an additional cellular factor, possibly the structurally related bHLH dimerization partner factor Arnt. In support of this model, addition of in vitro-expressed wild-type Arnt, but not a mutated form of Arnt lacking the bHLH motif, promoted release of hsp90 from the dioxin receptor in the presence of dioxin.


Sign in / Sign up

Export Citation Format

Share Document