scholarly journals Autocrine regulation of ecdysone synthesis by β3-octopamine receptor in the prothoracic gland is essential for Drosophila metamorphosis

2015 ◽  
Vol 112 (5) ◽  
pp. 1452-1457 ◽  
Author(s):  
Yuya Ohhara ◽  
Yuko Shimada-Niwa ◽  
Ryusuke Niwa ◽  
Yasunari Kayashima ◽  
Yoshiki Hayashi ◽  
...  

In Drosophila, pulsed production of the steroid hormone ecdysone plays a pivotal role in developmental transitions such as metamorphosis. Ecdysone production is regulated in the prothoracic gland (PG) by prothoracicotropic hormone (PTTH) and insulin-like peptides (Ilps). Here, we show that monoaminergic autocrine regulation of ecdysone biosynthesis in the PG is essential for metamorphosis. PG-specific knockdown of a monoamine G protein-coupled receptor, β3-octopamine receptor (Octβ3R), resulted in arrested metamorphosis due to lack of ecdysone. Knockdown of tyramine biosynthesis genes expressed in the PG caused similar defects in ecdysone production and metamorphosis. Moreover, PTTH and Ilps signaling were impaired by Octβ3R knockdown in the PG, and activation of these signaling pathways rescued the defect in metamorphosis. Thus, monoaminergic autocrine signaling in the PG regulates ecdysone biogenesis in a coordinated fashion on activation by PTTH and Ilps. We propose that monoaminergic autocrine signaling acts downstream of a body size checkpoint that allows metamorphosis to occur when nutrients are sufficiently abundant.

2018 ◽  
Author(s):  
Michelle A. Henstridge ◽  
Lucinda Aulsebrook ◽  
Takashi Koyama ◽  
Travis K. Johnson ◽  
James C. Whisstock ◽  
...  

ABSTRACTIn Drosophila key developmental transitions are governed by the steroid hormone ecdysone. A number of neuropeptide-activated signalling pathways control ecdysone production in response to environmental signals, including the insulin signalling pathway, which regulates ecdysone production in response to nutrition. Here, we find that the Membrane Attack Complex/Perforin-like protein Torso-like, best characterised for its role in activating the Torso receptor tyrosine kinase in early embryo patterning, also regulates the insulin signalling pathway in Drosophila. We previously reported that the small body size and developmental delay phenotypes of torso-like null mutants resemble those observed when insulin signalling is reduced. Here we report that, in addition to growth defects, torso-like mutants also display metabolic and nutritional plasticity phenotypes characteristic of mutants with impaired insulin signalling. We further find that in the absence of torso-like the expression of insulin-like peptides is increased, as is their accumulation in the insulin-producing cells. Finally, we show that Torso-like is a component of the hemolymph and that it is required in the prothoracic gland to control developmental timing and body size. Taken together, our data suggest that the secretion of Torso-like from the prothoracic gland influences the activity of insulin signalling throughout the body in Drosophila.ARTICLE SUMMARYIn many animals distinct developmental transitions are crucial for the coordinated progression from the juvenile stage to adulthood. In Drosophila, the transition from an immature larva into a reproductively mature adult is controlled by the steroid hormone ecdysone. Several neuropeptide-activated signalling pathways, including the insulin signalling pathway, regulate ecdysone production in response to environmental cues. Here we find that the perforin-like protein Torso-like regulates the insulin signalling pathway. We show that Torso-like is secreted into circulation where it acts to influence insulin-like peptide activity, revealing a novel mechanism for the regulation of insulin signalling in Drosophila.


2020 ◽  
Vol 134 (5) ◽  
pp. 473-512 ◽  
Author(s):  
Ryan P. Ceddia ◽  
Sheila Collins

Abstract With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand–receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein–coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.


2018 ◽  
Vol 6 (4) ◽  
pp. 28 ◽  
Author(s):  
Daniel Matúš ◽  
Simone Prömel

Many vital processes during C. elegans development, especially the establishment and maintenance of cell polarity in embryogenesis, are controlled by complex signaling pathways. G protein-coupled receptors (GPCRs), such as the four Frizzled family Wnt receptors, are linchpins in regulating and orchestrating several of these mechanisms. However, despite being GPCRs, which usually couple to G proteins, these receptors do not seem to activate classical heterotrimeric G protein-mediated signaling cascades. The view on signaling during embryogenesis is further complicated by the fact that heterotrimeric G proteins do play essential roles in cell polarity during embryogenesis, but their activity is modulated in a predominantly GPCR-independent manner via G protein regulators such as GEFs GAPs and GDIs. Further, the triggered downstream effectors are not typical. Only very few GPCR-dependent and G protein-mediated signaling pathways have been unambiguously defined in this context. This unusual and highly intriguing concept of separating GPCR function and G-protein activity, which is not restricted to embryogenesis in C. elegans but can also be found in other organisms, allows for essential and multi-faceted ways of regulating cellular communication and response. Although its relevance cannot be debated, its impact is still poorly discussed, and C. elegans is an ideal model to understand the underlying principles.


2021 ◽  
Vol 14 (673) ◽  
pp. eaax3053
Author(s):  
Mieke Metzemaekers ◽  
Anneleen Mortier ◽  
Alessandro Vacchini ◽  
Daiane Boff ◽  
Karen Yu ◽  
...  

The inflammatory human chemokine CXCL5 interacts with the G protein–coupled receptor CXCR2 to induce chemotaxis and activation of neutrophils. CXCL5 also has weak agonist activity toward CXCR1. The N-terminus of CXCL5 can be modified by proteolytic cleavage or deimination of Arg9 to citrulline (Cit), and these modifications can occur separately or together. Here, we chemically synthesized native CXCL5(1–78), truncated CXCL5 [CXCL5(9–78)], and the citrullinated (Cit9) versions and characterized their functions in vitro and in vivo. Compared with full-length CXCL5, N-terminal truncation resulted in enhanced potency to induce G protein signaling and β-arrestin recruitment through CXCR2, increased CXCL5-initiated internalization of CXCR2, and greater Ca2+ signaling downstream of not only CXCR2 but also CXCR1. Citrullination did not affect the capacity of CXCL5 to activate classical or alternative signaling pathways. Administering the various CXCL5 forms to mice revealed that in addition to neutrophils, CXCL5 exerted chemotactic activity toward monocytes and that this activity was increased by N-terminal truncation. These findings were confirmed by in vitro chemotaxis and Ca2+ signaling assays with primary human CD14+ monocytes and human THP-1 monocytes. In vitro and in vivo analyses suggested that CXCL5 targeted monocytes through CXCR1 and CXCR2. Thus, truncation of the N-terminus makes CXCL5 a more potent chemoattractant for both neutrophils and monocytes that acts through CXCR1 and CXCR2.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 622 ◽  
Author(s):  
Marianna Talia ◽  
Ernestina De Francesco ◽  
Damiano Rigiracciolo ◽  
Maria Muoio ◽  
Lucia Muglia ◽  
...  

The G protein-coupled estrogen receptor (GPER, formerly known as GPR30) is a seven-transmembrane receptor that mediates estrogen signals in both normal and malignant cells. In particular, GPER has been involved in the activation of diverse signaling pathways toward transcriptional and biological responses that characterize the progression of breast cancer (BC). In this context, a correlation between GPER expression and worse clinical-pathological features of BC has been suggested, although controversial data have also been reported. In order to better assess the biological significance of GPER in the aggressive estrogen receptor (ER)-negative BC, we performed a bioinformatics analysis using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets. Gene expression correlation and the statistical analysis were carried out with R studio base functions and the tidyverse package. Pathway enrichment analysis was evaluated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the Database for Annotation, Visualization and Integrated Discovery (DAVID) website, whereas gene set enrichment analysis (GSEA) was performed with the R package phenoTest. The survival analysis was determined with the R package survivALL. Analyzing the expression data of more than 2500 primary BC, we ascertained that GPER levels are associated with pro-migratory and metastatic genes belonging to cell adhesion molecules (CAMs), extracellular matrix (ECM)-receptor interaction, and focal adhesion (FA) signaling pathways. Thereafter, evaluating the disease-free interval (DFI) in ER-negative BC patients, we found that the subjects expressing high GPER levels exhibited a shorter DFI in respect to those exhibiting low GPER levels. Overall, our results may pave the way to further dissect the network triggered by GPER in the breast malignancies lacking ER toward a better assessment of its prognostic significance and the action elicited in mediating the aggressive features of the aforementioned BC subtype.


Sign in / Sign up

Export Citation Format

Share Document