scholarly journals Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets

2015 ◽  
Vol 112 (3) ◽  
pp. 815-820 ◽  
Author(s):  
Laura C. Norris ◽  
Bradley J. Main ◽  
Yoosook Lee ◽  
Travis C. Collier ◽  
Abdrahamane Fofana ◽  
...  

Animal species adapt to changes in their environment, including man-made changes such as the introduction of insecticides, through selection for advantageous genes already present in populations or newly arisen through mutation. A possible alternative mechanism is the acquisition of adaptive genes from related species via a process known as adaptive introgression. Differing levels of insecticide resistance between two African malaria vectors, Anopheles coluzzii and Anopheles gambiae, have been attributed to assortative mating between the two species. In a previous study, we reported two bouts of hybridization observed in the town of Selinkenyi, Mali in 2002 and 2006. These hybridization events did not appear to be directly associated with insecticide-resistance genes. We demonstrate that during a brief breakdown in assortative mating in 2006, A. coluzzii inherited the entire A. gambiae-associated 2L divergence island, which includes a suite of insecticide-resistance alleles. In this case, introgression was coincident with the start of a major insecticide-treated bed net distribution campaign in Mali. This suggests that insecticide exposure altered the fitness landscape, favoring the survival of A. coluzzii/A. gambiae hybrids, and provided selection pressure that swept the 2L divergence island through A. coluzzii populations in Mali. We propose that the work described herein presents a unique description of the temporal dynamics of adaptive introgression in an animal species and represents a mechanism for the rapid evolution of insecticide resistance in this important vector of human malaria in Africa.

Author(s):  
Adandé A Medjigbodo ◽  
Luc S Djogbenou ◽  
Aubin A Koumba ◽  
Laurette Djossou ◽  
Athanase Badolo ◽  
...  

Abstract An effective control of malaria vectors requires an extensive knowledge of mechanisms underlying the resistance-phenotypes developed by these vectors against insecticides. We investigated Anopheles gambiae mosquitoes from Benin and Togo for their intensity of insecticide resistance and we discussed the involvement of genotyped mechanisms in the resistance-phenotypes observed. Three- to five-day-old adult mosquitoes emerged from field and laboratory An. gambiae larvae were assayed using WHO tube intensity tests against various doses of deltamethrin: 1× (0.05%); 2× (0.1%); 5× (0.25%); 7.5× (0.375%) and those of pirimiphos-methyl: 0.5× (0.125%); 1× (0.25%). Members of An. gambiae complex were screened in field populations using polymerase chain reaction (PCR) assays. The presence of kdrR(1014F/1014S) and ace-1R(119S) mutations was also investigated using TaqMan and PCR-RFLP techniques, respectively. Anopheles gambiae from field were very resistant to deltamethrin, whereas KisKdr and AcerKdrKis strains displayed 100% mortality rates at 2× the diagnostic dose. In contrast, the field mosquitoes displayed a low resistance-intensity against 1× the diagnostic dose of pirimiphos-methyl, whereas AcerKis and AcerKdrKis strains showed susceptibility at 0.5× the diagnostic dose. Anopheles gambiae s.s., Anopheles coluzzii, and Anopheles arabiensis were identified. Allelic frequencies of kdrR (1014F) and ace-1R (119S) mutations in the field populations varied from 0.65 to 1 and 0 to 0.84, respectively. The field An. gambiae displayed high-resistance levels against deltamethrin and pirimiphos-methyl when compared with those of the laboratory An. gambiae-resistant strains. These results exhibit the complexity of underlying insecticide resistance mechanisms in these field malaria vectors.


2021 ◽  
Author(s):  
Kelsey L Adams ◽  
Simon P Sawadogo ◽  
Charles Nignan ◽  
Abdoulaye Niang ◽  
Douglas G Paton ◽  
...  

Anopheles coluzzii females, important malaria vectors in Africa, mate only once in their lifetime. Mating occurs in aerial swarms with a high male-to-female ratio, where the traits underling male mating success are largely unknown. Here, we investigated whether cuticular hydrocarbons (CHCs) influence mating success in natural mating swarms in Burkina Faso. As insecticides are widely used in this area for malaria control, we also determined whether CHCs affect insecticide resistance levels. We find that mated males have higher CHC abundance than unmated controls, suggesting CHCs could be a determinant of mating success. Additionally, mated males have higher insecticide resistance under pyrethroid challenge, and we show a link between resistance intensity and CHC abundance. Taken together, our results reveal overlapping roles played by CHCs in mate choice and insecticide resistance, and point to sexual selection for insecticide resistance traits that limit the efficacy of our best malaria control tools.


2021 ◽  
Author(s):  
Antoine SANOU ◽  
Luca Nelli ◽  
Moussa W Guelbeogo ◽  
Fatoumata Cisse ◽  
Madou Tapsoba ◽  
...  

The decline in malaria across Africa has been largely attributed to vector control using Long-Lasting Insecticidal Nets (LLINs). However, this intervention has prompted widespread insecticide resistance (IR) and been associated with changes in mosquito behaviour that reduce their contact with LLINs. The relative importance and rate at which IR and behavioural adaptations emerge are poorly understood. We conducted surveillance of mosquito behaviour and IR at 12 sites in Burkina Faso to assess the magnitude and temporal dynamics of insecticide and behavioural resistance in vectors in the 2-year following mass LLIN distribution. Insecticide resistance was present in all vector populations and increased rapidly over the study. In contrast, no longitudinal shifts in LLIN-avoidance behaviours (earlier or outdoor biting and resting) were detected. There was a moderate shift in vector species composition from Anopheles coluzzii to Anopheles gambiae which coincided with a reduction in the proportion of bites preventable by LLINs; possibly driven by between-species variation in behaviour. These findings indicate that adaptations based on insecticide resistance arise and intensify more rapidly than behavioural shifts within mosquito vectors. However, longitudinal shifts in mosquito vector species composition were evident within 2 years following a mass LLIN distribution. This ecological shift was characterized by a relative increase in the moderately more exophagic species (An. gambiae) and coincided with a predicted decline in the degree of protection expected from LLINs. Although human exposure fell through the study period due to reducing vector densities and infection rates, such ecological shifts in vector species along with insecticide resistance were likely to have eroded the efficacy of LLINs. While both adaptations impact malaria control, the rapid increase of the former indicates it is the most rapid strategy but interventions targeting both will be needed.


2009 ◽  
Vol 8 (1) ◽  
pp. 233 ◽  
Author(s):  
Armel Djènontin ◽  
Joseph Chabi ◽  
Thierry Baldet ◽  
Seth Irish ◽  
Cédric Pennetier ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hermann Watson Sagbohan ◽  
Casimir D. Kpanou ◽  
Razaki Osse ◽  
Fortuné Dagnon ◽  
Germain G. Padonou ◽  
...  

Abstract Background Insecticide resistance is threatening the effectiveness of efforts to control malaria vectors in Benin. This study explores the levels and mechanisms of insecticide resistance in An. gambiae s.l. to pyrethroids. Methods Larvae were collected from August 2017 to July 2018 in five communes in southern Benin (Adjohoun, Allada, Bohicon, Cotonou, and Porto-Novo) representing diverse ecological regions, and were reared in Benin’s insectary. Two- to five-day-old female mosquitoes from each district were exposed to multiple doses of deltamethrin and permethrin (1×, 2×, 5×, and 10×) using the WHO insecticide resistance intensity bioassay. The effect of pre-exposure to the synergist, piperonyl butoxide (PBO), was also tested at different pyrethroid doses. Molecular allele frequencies of kdr (1014F) and ace-1R (119S) insecticide resistance mutations and levels of detoxification enzymes were determined for mosquitoes sampled from each study area. Results An. gambiae s.l. were resistant to pyrethroid-only exposure up to 10× the diagnostic doses in all the study sites for both deltamethrin and permethrin. Mortality was significantly higher in An. gambiae s.l. pre-exposed to PBO followed by exposure to deltamethrin or permethrin compared to mosquitoes exposed to deltamethrin or permethrin only (p < 0.001). The difference in mortality between deltamethrin only and PBO plus deltamethrin was the smallest in Cotonou (16–64%) and the greatest in Bohicon (12–93%). The mortality difference between permethrin only and PBO plus permethrin was the smallest in Cotonou (44–75%) and the greatest in Bohicon (22–72%). In all the study sites, the kdr resistance allele (1014F) frequency was high (75–100%), while the ace-1 resistance allele (G119S) frequency was low (0–3%). Analysis of the metabolic enzymatic activity of An. gambiae s.l. showed overexpression of nonspecific esterases and glutathione S-transferases (GST) in all study sites. In contrast to the PBO results, oxidase expression was low and was similar to the susceptible An. gambiae s.s. Kisumu strain in all sites. Conclusion There is high-intensity resistance to pyrethroids in southern Benin. However, pre-exposure to PBO significantly increased susceptibility to the pyrethroids in the different An. gambiae s.l. populations sampled. The use of PBO insecticide-treated bed nets may help maintain the gains in An. gambiae (s.l.) control in southern Benin. Graphical Abstract


Author(s):  
M. Y. Korti ◽  
T. B. Ageep ◽  
A. I. Adam ◽  
K. B. Shitta ◽  
A. A. Hassan ◽  
...  

Abstract Background Chemical control has been the most efficient method in mosquito control, the development of insecticide resistance in target populations has a significant impact on vector control. The use of agricultural pesticides may have a profound impact on the development of resistance in the field populations of malaria vectors. Our study focused on insecticide resistance and knockdown resistance (kdr) of Anopheles arabiensis populations from Northern Sudan, related to agricultural pesticide usage. Results Anopheles arabiensis from urban and rural localities (Merowe and Al-hamadab) were fully susceptible to bendiocarb 0.1% and permethrin 0.75% insecticides while resistant to DDT 4% and malathion 5%. The population of laboratory reference colony F189 from Dongola showed a mortality of 91% to DDT (4%) and fully susceptible to others. GLM analysis indicated that insecticides, sites, site type, and their interaction were determinant factors on mortality rates (P < 0.01). Except for malathion, mortality rates of all insecticides were not significant (P > 0.05) according to sites. Mortality rates of malathion and DDT were varied significantly (P < 0.0001 and P < 0.05 respectively) by site types, while mortality rates of bendiocarb and permethrin were not significant (P >0.05). The West African kdr mutation (L1014F) was found in urban and rural sites. Even though, the low-moderate frequency of kdr (L1014F) mutation was observed. The findings presented here for An. arabiensis showed no correlation between the resistant phenotype as ascertained by bioassay and the presence of the kdr mutation, with all individuals tested except the Merowe site which showed a moderate association with DDT (OR= 6 in allelic test), suggesting that kdr genotype would be a poor indicator of phenotypic resistance. Conclusion The results provide critical pieces of information regarding the insecticide susceptibility status of An. arabiensis in northern Sudan. The usage of the same pesticides in agricultural areas seemed to affect the Anopheles susceptibility when they are exposed to those insecticides in the field. The kdr mutation might have a less role than normally expected in pyrethroids resistance; however, other resistance genes should be in focus. These pieces of information will help to improve the surveillance system and The implication of different vector control programs employing any of these insecticides either in the treatment of bed nets or for indoor residual spraying would achieve satisfactory success rates.


2021 ◽  
Author(s):  
Inga E. Holmdahl ◽  
Caroline O. Buckee ◽  
Lauren M. Childs

Background Systematic, long-term, and spatially representative monitoring of insecticide resistance in mosquito populations is urgently needed to quantify its impact on malaria transmission, and to combat failing interventions when resistance emerges. Resistance assays on wild-caught adult mosquitoes (known as adult-capture) offer an alternative to the current protocols, and can be done cheaply, in a shorter time frame, and in the absence of an insectary. However, quantitative assessments of the performance of these assays relative to the gold standard, which involves rearing larvae in an insectary, are lacking. Methodology/Principal findings We developed a discrete-time deterministic mosquito lifecycle model to simulate insecticide resistance assays from adult-captured mosquito collection in a heterogeneous environment compared to the gold standard larval capture methods, and to quantify possible biases in the results. We incorporated non-lethal effects of insecticide exposure that have been demonstrated in laboratory experiments, spatial structure, and the impact of multiple exposure to insecticides and natural ageing on mosquito death rates during the assay. Using output from this model, we compared the results of these assays to true resistance as measured by the presence of the resistance allele. In simulated samples of 100 test mosquitoes, reflecting WHO-recommended sample sizes, we found that compared to adult-captured assays (MSE = 0.0059), larval-captured assays were a better measure of true resistance (MSE = 0.0018). Using a correction model, we were able to improve the accuracy of the adult-captured assay results (MSE = 0.0038). Bias in the adult-capture assays was dependent on the level of insecticide resistance rather than coverage of bed nets or spatial structure. Conclusions/Significance Using adult-captured mosquitoes for resistance assays has logistical advantages over the standard larval-capture collection, and may be a more accurate sample of the mosquito population. These results show that adult-captured assays can be improved using a simple mathematical approach and used to inform resistance monitoring programs.


2021 ◽  
Vol 2 ◽  
Author(s):  
Yaw Akuamoah-Boateng ◽  
Ruth C. Brenyah ◽  
Sandra A. Kwarteng ◽  
Patrick Obuam ◽  
Isaac Owusu-Frimpong ◽  
...  

IntroductionRecent surge of Anopheles resistance to major classes of World Health Organization (WHO)-approved insecticides globally necessitates the need for information about local malaria vector populations. It is believed that insecticide efficacy loss may lead to operational failure of control interventions and an increase in malaria infection transmission. We investigated the susceptibility levels of malaria vectors to all classes of WHO-approved vector control insecticides and described the dynamics of malaria transmission in a peri-urban setting.MethodsFit 3–5-day-old adults that emerged from Anopheles larvae collected from several different sites in the study area were subjected to the WHO bioassay for detecting insecticide resistance. The knockdown resistance gene (kdr) mutations within the vector populations were detected using PCR. Entomological inoculation rates were determined using the human landing catch technique and Plasmodium falciparum circumsporozoite ELISA.ResultsThe malaria vectors from the study area were resistant to all classes of insecticides tested. Out of the 284 Anopheles complex specimen assayed for the resistance study, 265 (93.30%) were identified as Anopheles gambiae s.s. The kdr gene was detected in 90% of the Anopheles gambiae s.s. assayed. In an area where Anopheles coluzzii resistance to insecticides had never been reported, the kdr gene was detected in 78% of the Anopheles coluzzii sampled. The entomological inoculation rate (EIR) for the dry season was 1.44 ib/m/n, whereas the EIR for the rainy season was 2.69 ib/m/n.ConclusionsThis study provides information on the high parasite inoculation rate and insecticide resistance of malaria vectors in a peri-urban community, which is critical in the development of an insecticide resistance management program for the community.


Author(s):  
A. Djènontin ◽  
B. Zogo ◽  
J. Ahlonsou ◽  
A. Bouraima ◽  
M. Ibikounle ◽  
...  

Lagoon areas maintain ideal water conditions for mosquito breeding habitats and are thus environments with high risk of malaria transmission. In Benin, several administrative units, among which the Sô-Ava District, are located in lagoon areas. We conducted entomological surveys in this lagoon district from July 2014 to June 2015, in order to update existing information on biodiversity of mosquitoes, Plasmodium falciparum infection, and insecticide resistance status in malaria vectors. Our survey found that Culex quinquefasciatus and Mansonia africana were the most abundant species, and that Anopheles coluzzii represented the main malaria vector in this area, followed by Anopheles melas. Only Anopheles coluzzii was positive to Plasmudium falcimarum circum sporozoitic protein (4.2 %). An. gambiae s.l. were susceptible to chlorpyrifos-methyl and bendiocarb but resistant to all pyrethroids tested and to pyrimiphos-methyl. The average of kdr allelic frequency from July 2014 to June 2015 was 77.4% and that of ace1 gene was less than 1%. We conclude that Anopheles coluzzii is the main malaria vector in the lagoon area we studied, somewhat contrary to our expectations. However, this malaria vector was resistant to insecticides used for bed net impregnation, even if the resistance level was lower than observed in other parts of Benin.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1948
Author(s):  
Moussa Diallo ◽  
Majidah Hamid-Adiamoh ◽  
Ousmane Sy ◽  
Pape Cheikh Sarr ◽  
Jarra Manneh ◽  
...  

The evolution and spread of insecticide resistance mechanisms amongst malaria vectors across the sub-Saharan Africa threaten the effectiveness and sustainability of current insecticide-based vector control interventions. However, a successful insecticide resistance management plan relies strongly on evidence of historical and contemporary mechanisms circulating. This study aims to retrospectively determine the evolution and spread of pyrethroid resistance mechanisms among natural Anopheles gambiae s.l. populations in Senegal. Samples were randomly drawn from an existing mosquito sample, collected in 2013, 2017, and 2018 from 10 sentinel sites monitored by the Senegalese National Malaria Control Programme (NMCP). Molecular species of An. gambiae s.l. and the resistance mutations at the Voltage-gated Sodium Channel 1014 (Vgsc-1014) locus were characterised using PCR-based assays. The genetic diversity of the Vgsc gene was further analyzed by sequencing. The overall species composition revealed the predominance of Anopheles arabiensis (73.08%) followed by An. gambiae s.s. (14.48%), Anopheles coluzzii (10.94%) and Anopheles gambiae–coluzii hybrids (1.48%). Both Vgsc-1014F and Vgsc-1014S mutations were found in all studied populations with a spatial variation of allele frequencies from 3% to 90%; and 7% to 41%, respectively. The two mutations have been detected since 2013 across all the selected health districts, with Vgsc-L1014S frequency increasing over the years while Vgsc-1014F decreasing. At species level, the Vgsc-1014F and Vgsc-1014S alleles were more frequent amongst An. gambiae s.s. (70%) and An. arabiensis (20%). The Vgsc gene was found to be highly diversified with eight different haplotypes shared between Vgsc-1014F and Vgsc-1014S. The observed co-occurrence of Vgsc-1014F and Vgsc-1014S mutations suggest that pyrethroid resistance is becoming a widespread phenomenon amongst malaria vector populations, and the NMCP needs to address this issue to sustain the gain made in controlling malaria.


Sign in / Sign up

Export Citation Format

Share Document