scholarly journals A genetic basis of variation in eccrine sweat gland and hair follicle density

2015 ◽  
Vol 112 (32) ◽  
pp. 9932-9937 ◽  
Author(s):  
Yana G. Kamberov ◽  
Elinor K. Karlsson ◽  
Gerda L. Kamberova ◽  
Daniel E. Lieberman ◽  
Pardis C. Sabeti ◽  
...  

Among the unique features of humans, one of the most salient is the ability to effectively cool the body during extreme prolonged activity through the evapotranspiration of water on the skin’s surface. The evolution of this novel physiological ability required a dramatic increase in the density and distribution of eccrine sweat glands relative to other mammals and a concomitant reduction of body hair cover. Elucidation of the genetic underpinnings for these adaptive changes is confounded by a lack of knowledge about how eccrine gland fate and density are specified during development. Moreover, although reciprocal changes in hair cover and eccrine gland density are required for efficient thermoregulation, it is unclear if these changes are linked by a common genetic regulation. To identify pathways controlling the relative patterning of eccrine glands and hair follicles, we exploited natural variation in the density of these organs between different strains of mice. Quantitative trait locus mapping identified a large region on mouse Chromosome 1 that controls both hair and eccrine gland densities. Differential and allelic expression analysis of the genes within this interval coupled with subsequent functional studies demonstrated that the level of En1 activity directs the relative numbers of eccrine glands and hair follicles. These findings implicate En1 as a newly identified and reciprocal determinant of hair follicle and eccrine gland density and identify a pathway that could have contributed to the evolution of the unique features of human skin.

2021 ◽  
pp. 422-427
Author(s):  
Austin J. Jabbour ◽  
Ibrahim A. Tangoren ◽  
Andrew B. Kanik

Digital papillary adenocarcinoma (DPA) is a rare cutaneous tumor originating from the eccrine sweat glands. These lesions occur almost exclusively on the digits of the hands and feet, where there is a high concentration of eccrine glands. The diagnosis is made histologically, and the course of the malignancy tends to be very aggressive with high rates of recurrence and early metastasis at the time of diagnosis. Due to the low incidence of these lesions, there have been minimal objective data from clinical studies to recommend specific treatment strategies. Wide local excision versus digital amputation proximal to the lesion has been debated for primary treatment, while there are no data to support routine implementation of adjuvant chemotherapy or radiation, despite its metastatic nature. This article presents a case of long-standing, previously undiagnosed DPA. The lesion appeared more inconspicuous on gross examination than other reports in the literature, and diagnosis was made with punch biopsy and confirmed postsurgically. To date, the patient has not had recurrence, although she is being monitored for potential metastatic deposits in her lungs. Clinical dermatologists should be aware of the high mortality burden this lesion may inflict if left undiagnosed or mistreated.


2020 ◽  
Vol 1 (5) ◽  
Author(s):  
Verónica García Yllán ◽  
Lic. María Llorca Clímens

Eccrine sweat glands are widely distributed throughout the body and regulate body temperature in respond to cholinergic stimuli. Eccrine sweat gland carcinomas are rare and were first described by Cornil in 1865. Their incidence is 1% of all cutaneous malignancies, and the wide range of histological appearances and their similarity to metastatic carcinomas have generated uncertainties and controversies for many years regarding its diagnosis, biological behavior, and treatment. We present the case of a patient with eccrine duct carcinoma of the knee that recurred four years after her first excision. Key words: case report, eccrine sweat glands, eccrine duct carcinoma, cutaneous malignancies


2018 ◽  
Author(s):  
Yana G. Kamberov ◽  
Samantha M. Guhan ◽  
Alessandra DeMarchis ◽  
Judy Jiang ◽  
Sara Sherwood Wright ◽  
...  

AbstractHumans differ in many respects from other primates, but perhaps no derived human feature is more striking than our naked skin. Long purported to be adaptive, humans’ unique external appearance is characterized by changes in both the patterning of hair follicles and eccrine sweat glands, producing decreased hair cover and increased sweat gland density. Despite the conspicuousness of these features and their potential evolutionary importance, there is a lack of clarity regarding how they evolved within the primate lineage. We thus collected and quantified the density of hair follicles and eccrine sweat glands from five regions of the skin in three species of primates: macaque, chimpanzee and human. Although human hair cover is greatly attenuated relative to that of our close relatives, we find that humans have a chimpanzee-like hair density that is significantly lower than that of macaques. In contrast, eccrine gland density is on average 10-fold higher in humans compared to chimpanzees and macaques, whose density is strikingly similar. Our findings suggest that a decrease in hair density in the ancestors of humans and apes was followed by an increase in eccrine gland density and a reduction in fur cover in humans. This work answers longstanding questions about the traits that make human skin unique and substantiates a model in which the evolution of expanded eccrine gland density was exclusive to the human lineage.


1955 ◽  
Vol 46 (1) ◽  
pp. 19-30 ◽  
Author(s):  
E. S. E. Hafez ◽  
A. L. Badreldin ◽  
M. M. Shafei

The structure, distribution and dimensions of skin strata and sweat glands have been investigated in Egyptian buffaloes and cattle. Samples from sixteen body regions were taken from three adult bulls of both species. Identical studies were also made on one buffalo calf and two buffalo embryos. Serial vertical and horizontal sections were cut from each body region using the ‘terpineol paraffin wax’ method. The following results were obtained.1. Buffalo skin is characterized by dermal papillae enclosing papillomatous epidermis. The fibrous structure of the dermis is similar in both species. In buffaloes, the average thickness of skin, main epidermis, papillomatous epidermis, and cornium is 6·5 mm., 50, 115, and 11μ respectively. The epidermis coefficient is 12 for the main epidermis and 18 for the papillomatous epidermis. In cattle, the average thickness of skin, epidermis and cornium layer is 4·3 mm., 51 and 5 μ respectively, while the epidermis coefficient is 8.2. The average number of hair follicles per sq.cm. of skin is 394 in the buffalo and 2633 in cattle. Each hair follicle is accompanied by two large lobulated sebaceous glands in the buffalo, and one small bilobed gland in cattle.3. There is no species difference in the histology of the sweat glands. Each hair follicle is accompanied by one sweat gland in both species. In the buffalo, the body of the sweat gland is oval and convoluted, while the duct is twisted at its attachment to the body. In cattle, the body of the gland is elongated while the duct is straight. The number of sweat glands per sq.cm. of skin is 394 in the buffalo and 2633 in cattle. The dimensions of the sweat glands are larger in buffaloes than in cattle. The length, circumference and sweating surface of the gland is 0·58, 0·47, and 0·276 sq.mm. in the buffalo, and 0·47, 0·26, and 0·124 sq.mm. in cattle respectively. The glandular surface of sweat glands per sq.cm. of skin is 1·07 sq.cm. in the buffalo and 3·08 sq.cm. in cattle.4. The type of sweat gland secretion is apocrine in both species. In the buffalo, successive stages of apocrine secretion are observed, and the merocrinelike form is rare. In cattle, the merocrine-like form prevails and the other stages are very rare. The theory (Findlay & Yang, 1950) of intraluminal transformation, of secretory products from coarse granularity to fluid homogeneity is supported. The effect of locality on the type of sweating activity is stressed.5. There are species differences in the distribution of blood vessels and capillaries. In the subepidermal level, the arterial branches are more frequent and superficial in buffaloes than in cattle. Capillaries are found in the dermal papillae of buffalo skin. The capillary loops encircling the hair follicle are more frequent in cattle than in buffaloes. The blood capillaries supplying the sebaceous glands are more numerous in the buffalo than in cattle. The blood supply of sweat glands is poor in both species.6. There are age differences in the skin histology. The number of hair follicles per sq.cm. of skin in a 5-months-old embryo, calf at birth, and adult buffaloes is 10560, 1248 and 400 respectively. There are no skin glands in the 1-month and 5-months-old embryos. The sweat gland in the calf is small in size and similar in structure to that of the adult. Calves have fewer sweat glands than adults.7. The body conformation and the degree of pigmentation are affected by species, breed and locality.8. The secreting activity of the sweat glands may be affected by the locality.9. It seems that there are species differences in the mechanism of heat convection and radiation, insensible perspiration and sensible perspiration, due to histological differences.


1972 ◽  
Vol 25 (3) ◽  
pp. 585 ◽  
Author(s):  
D Mcewan Jenkinson ◽  
T Nay

Measurements were made on the skins of 1363 cattle from different European breeds. The mean values of these measurements have been tabulated for each breed and the skin types present in each breed or group of breeds have been determined using sweat gland shape (LID) and hair follicle depth (FrY) as the principal bases of comparison.


2020 ◽  
Author(s):  
Daniel Aldea ◽  
Yuji Atsuta ◽  
Blerina Kokalari ◽  
Stephen Schaffner ◽  
Bailey Warder ◽  
...  

SummaryHumans rely on sweating to cool off and have the highest eccrine sweat gland density among mammals. We investigated whether altered regulation of the Engrailed 1 (EN1) gene, the levels of which are critical for patterning eccrine glands during development, could underlie the evolution of this defining human trait. First, we identify five EN1 candidate enhancers (ECEs) using comparative genomics and validation of enhancer activity in mouse skin. The human ortholog of one ECE, hECE18, contains multiple derived substitutions that together dramatically increase the activity of this enhancer in keratinocytes. Targeted repression of hECE18 reduces EN1 expression in human keratinocytes, indicating hECE18 upregulates EN1 in this context. Finally, we find that hECE18 increases ectodermal En1 in a humanized knock-in mouse to increase eccrine gland number. Our study uncovers a genetic basis for the evolution of one of the most singular human adaptations and implicates the recurrent mutation of a single enhancer as a novel mechanism for evolutionary change.


2019 ◽  
Vol 50 (4) ◽  
pp. 335-342 ◽  
Author(s):  
Leilei Cao ◽  
Liyun Chen ◽  
Haihong Li ◽  
Zairong Wei ◽  
Sitian Xie ◽  
...  

2019 ◽  
Vol 20 (11) ◽  
pp. 2758 ◽  
Author(s):  
Elisa Carrasco ◽  
Gonzalo Soto-Heredero ◽  
María Mittelbrunn

Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are cell-derived membranous structures that were originally catalogued as a way of releasing cellular waste products. Since the discovery of their function in intercellular communication as carriers of proteins, lipids, and DNA and RNA molecules, numerous therapeutic approaches have focused on the use of EVs, in part because of their minimized risk compared to cell-based therapies. The skin is the organ with the largest surface in the body. Besides the importance of its body barrier function, much attention has been paid to the skin in regenerative medicine because of its cosmetic aspect, which is closely related to disorders affecting pigmentation and the presence or absence of hair follicles. The use of exosomes in therapeutic approaches for cutaneous wound healing has been reported and is briefly reviewed here. However, less attention has been paid to emerging interest in the potential capacity of EVs as modulators of hair follicle dynamics. Hair follicles are skin appendices that mainly comprise an epidermal and a mesenchymal component, with the former including a major reservoir of epithelial stem cells but also melanocytes and other cell types. Hair follicles continuously cycle, undergoing consecutive phases of resting, growing, and regression. Many biomolecules carried by EVs have been involved in the control of the hair follicle cycle and stem cell function. Thus, investigating the role of either naturally produced or therapeutically delivered EVs as signaling vehicles potentially involved in skin homeostasis and hair cycling may be an important step in the attempt to design future strategies towards the efficient treatment of several skin disorders.


1980 ◽  
Vol 268 (3) ◽  
pp. 257-260 ◽  
Author(s):  
Attila Galosi ◽  
Helmut Pullmann ◽  
Gerd Klaus Steigleder

Sign in / Sign up

Export Citation Format

Share Document