scholarly journals Layerless fabrication with continuous liquid interface production

2016 ◽  
Vol 113 (42) ◽  
pp. 11703-11708 ◽  
Author(s):  
Rima Janusziewicz ◽  
John R. Tumbleston ◽  
Adam L. Quintanilla ◽  
Sue J. Mecham ◽  
Joseph M. DeSimone

Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology.

2017 ◽  
Vol 1142 ◽  
pp. 245-249 ◽  
Author(s):  
Anil Saigal ◽  
John Tumbleston

In the rapidly growing field of additive manufacturing (AM), the focus in recent years has shifted from prototyping to manufacturing fully functional, ultralight, ultrastiff end-use parts. This research investigates the stress-strain behavior of an octahedral-and octet-truss lattice structured polyacrylate fabricated using Continuous Liquid Interface Production (CLIP) technology based on 3D printing and additive manufacturing processes. Continuous Liquid Interface Production (CLIP) is a breakthrough technology that grows parts instead of printing them layer by layer. Lattice structures such as the octahedral-and octet-truss lattice have recently attracted a lot of attention since they are often structurally more efficient than foams of a similar density made from the same material, and the ease with which these structures can now be produced using 3D printing and additive manufacturing. This research investigates the stress-strain behavior under compression of an octahedral-and octet-truss lattice structured polyacrylate fabricated using CLIP technology


Author(s):  
Judah Balli ◽  
Subha Kumpaty ◽  
Vince Anewenter

The purpose of this paper is to understand and research literature on the “continuous liquid interface production (CLIP)” of 3D objects to address the current challenges. This proprietary technology was originally owned by EiPi Systems but is now being developed by Carbon 3D. Unlike conventional rapid prototyping of printing layer-by-layer to print 3D objects, CLIP is achieved with an oxygen-permeable window made of proprietary glass membrane and the ultraviolet image projection plane below it, which allows the continuous liquid interface to produce 3D objects where photo-polymerization is restricted between the window and the polymerizing part. This process eliminates the time requirement in between the layers resulting in the faster production of 3D objects with a resolution less than 100 microns. It is a known factor that the “supports” play a vital role in any liquid based 3D printing techniques and this does not change in CLIP. In addition to the parameters of support structure like shape, size, strength, ease of removability, surface finish after removal of supports etc, CLIP needs to deal with different types of materials. The support structure needs to be designed according to the respective material’s properties. There are two broad categories of the materials available from Carbon 3D, prototyping resins, and engineering resins. While the prototyping resin is used for the cosmetic models and the engineering resins are used for the practical applications. There are 6 types of engineering resins developed for the end user; of these, EPU and CE are more challenging to work with. EPU parts needs more supports and careful handling till the completion of post processing as the material is soft. CE parts are fragile and needs more systematic handling to complete the successful production. Although printing parts of EPU and CE is more time consuming when compared to the normal CLIP process, they are worth for their unmatched industrial applications. None of the existing 3D printing technologies offers this quality. The support structure, orientation and pot life are the influencing parameters for all resins. In this study, it is statistically proven that by optimizing the part orientation with respect to the slicing of each layer and customized supports; parts are built way better than before. The part orientation is optimized by ensuring each layer is supporting the subsequent layer and minimizing the islands. It is noticed that the results are always better by tilting the part 5 to 10 degrees in both X and Y axis in the build setup and this applies for most of the straight geometrical parts. For parts of specific geometry which can create a vacuum while pulling up the part needs to be oriented in a different way or create a re-closable air passage that can prevent the vacuum being created.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


Author(s):  
Adrian Circiumaru ◽  
Vasile Bria ◽  
Iulian-Gabriel Birsan ◽  
Gabriel Andrei ◽  
Dumitru Dima

The multi-component composites could represent the cheapest solution when controllable properties are required. In order to establish the right amount of filler it is necessary to analyze not only the electro-magnetic and mechanical properties but also, the thermal ones. The filler presence in the matrix produces discontinuities at the fibre-matrix interface with consequences regarding mechanical properties. Using a single filler it is possible to improve one or two properties electrical and thermal conductivity for instance and mean time to induce a decrease of other properties as bending strength, shock resistance etc. Using polymer layers with relatively high electrical conductivity as external layers of laminate and magnetic particles filled polymer as core layers. An electric circuit might be, at the same time, the reinforcement of a composite leading to lighter structures and, based on carbon fiber’s properties might transmit information about the material’s loading, temperature or integrity. Fabric reinforced or textile composites are used in aerospace, automotive, naval and other applications. They are convenient material forms providing adequate stiffness and strength in many structures. The microstructure of composite reinforced with woven, braided, or stitched networks is significantly different from that of tape based laminates. The properties of the composite depend not only on the properties of the components but on quality and nature of the interface between the components and its properties. Reinforced composites with filled epoxy matrix were formed using a hybrid technique consisting in layer-by-layer adding of reinforcement sheets into a glass mould. Various distributions of reinforcement sheets and filled polymer layers were realized in order to point out the ways in which the final properties might be controlled. Mechanical properties were analyzed.


2011 ◽  
Vol 70 ◽  
pp. 405-409 ◽  
Author(s):  
Emrah Demirci ◽  
Memiş Acar ◽  
Behnam Pourdeyhimi ◽  
Vadim V. Silberschmidt

Having a unique microstructure, nonwoven fabrics possess distinct mechanical properties, dissimilar to those of woven fabrics and composites. This paper aims to introduce a methodology for simulating a dynamic response of core/sheath-type thermally bonded bicomponent fibre nonwovens. The simulated nonwoven fabric is treated as an assembly of two regions with distinct mechanical properties. One region - the fibre matrix – is composed of non-uniformly oriented core/sheath fibres acting as link between bond points. Non-uniform orientation of individual fibres is introduced into the model in terms of the orientation distribution function in order to calculate the structure’s anisotropy. Another region – bond points – is treated in simulations as a deformable bicomponent composite material, composed of the sheath material as its matrix and the core material as reinforcing fibres with random orientations. Time-dependent anisotropic mechanical properties of these regions are assessed based on fibre characteristics and manufacturing parameters such as the planar density, core/sheath ratio, fibre diameter etc. Having distinct anisotropic mechanical properties for two regions, dynamic response of the fabric is modelled in the finite element software with shell elements with thicknesses identical to those of the bond points and fibre matrix.


2018 ◽  
Vol 114 (3) ◽  
pp. 513a
Author(s):  
Yuri M. Efremov ◽  
Mirian Velay-Lizancos ◽  
Daniel M. Suter ◽  
Pablo D. Zavattieri ◽  
Arvind Raman

1989 ◽  
Vol 22 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Naoki Sasaki ◽  
Norio Matsushima ◽  
Tetsu Ikawa ◽  
Hidemi Yamamura ◽  
Akeharu Fukuda

Sign in / Sign up

Export Citation Format

Share Document