scholarly journals C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in Arabidopsis and yeast

2016 ◽  
Vol 113 (50) ◽  
pp. E8197-E8206 ◽  
Author(s):  
Bo Zhang ◽  
Guohua Yang ◽  
Yu Chen ◽  
Yihong Zhao ◽  
Peng Gao ◽  
...  

Rho GTPases, including the Rho, Cdc42, Rac, and ROP subfamilies, act as pivotal signaling switches in various growth and developmental processes. Compared with the well-defined role of cytoskeletal organization in Rho signaling, much less is known regarding transcriptional regulation. In a mutant screen for phenotypic enhancers of transgenic Arabidopsis plants expressing a constitutively active form of ROP2 (designated CA1-1), we identified RNA polymerase II (Pol II) C-terminal domain (CTD) phosphatase-like 1 (CPL1) as a transcriptional regulator of ROP2 signaling. We show that ROP2 activation inhibits CPL1 activity by promoting its degradation, leading to an increase in CTD Ser5 and Ser2 phosphorylation. We also observed similar modulation of CTD phosphorylation by yeast Cdc42 GTPase and enhanced degradation of the yeast CTD phosphatase Fcp1 by activated ROP2 signaling. Taken together, our results suggest that modulation of the Pol II CTD code by Rho GTPase signaling represents an evolutionarily conserved mechanism in both unicellular and multicellular eukaryotes.

2004 ◽  
Vol 24 (20) ◽  
pp. 8963-8969 ◽  
Author(s):  
Gregory Bird ◽  
Diego A. R. Zorio ◽  
David L. Bentley

ABSTRACT We investigated the role of RNA polymerase II (pol II) carboxy-terminal domain (CTD) phosphorylation in pre-mRNA processing coupled and uncoupled from transcription in Xenopus oocytes. Inhibition of CTD phosphorylation by the kinase inhibitors 5,6-dichloro-1β-d-ribofuranosyl-benzimidazole and H8 blocked transcription-coupled splicing and poly(A) site cleavage. These experiments suggest that pol II CTD phosphorylation is required for efficient pre-mRNA splicing and 3′-end formation in vivo. In contrast, processing of injected pre-mRNA was unaffected by either kinase inhibitors or α-amanitin-induced depletion of pol II. pol II therefore does not appear to participate directly in posttranscriptional processing, at least in frog oocytes. Together these experiments show that the influence of the phosphorylated CTD on pre-mRNA splicing and 3′-end processing is mediated by transcriptional coupling.


2007 ◽  
Vol 27 (6) ◽  
pp. 2059-2073 ◽  
Author(s):  
Victoria H. Cowling ◽  
Michael D. Cole

ABSTRACT Myc is a transcription factor which is dependent on its DNA binding domain for transcriptional regulation of target genes. Here, we report the surprising finding that Myc mutants devoid of direct DNA binding activity and Myc target gene regulation can rescue a substantial fraction of the growth defect in myc −/− fibroblasts. Expression of the Myc transactivation domain alone induces a transcription-independent elevation of the RNA polymerase II (Pol II) C-terminal domain (CTD) kinases cyclin-dependent kinase 7 (CDK7) and CDK9 and a global increase in CTD phosphorylation. The Myc transactivation domain binds to the transcription initiation sites of these promoters and stimulates TFIIH binding in an MBII-dependent manner. Expression of the Myc transactivation domain increases CDK mRNA cap methylation, polysome loading, and the rate of translation. We find that some traditional Myc transcriptional target genes are also regulated by this Myc-driven translation mechanism. We propose that Myc transactivation domain-driven RNA Pol II CTD phosphorylation has broad effects on both transcription and mRNA metabolism.


2020 ◽  
Author(s):  
A.I. Garrido-Godino ◽  
A. Cuevas-Bermúdez ◽  
F. Gutiérrez-Santiago ◽  
M.C. Mota-Trujillo ◽  
F. Navarro

ABSTRACTRtr1 is an RNA pol II CTD-phosphatase that influences gene expression by acting during the transition from transcription initiation to elongation, and during transcription termination. Rtr1 has been proposed as an RNA pol II import factor in RNA pol II biogenesis, and participating in mRNA decay by autoregulating the turnover of its own mRNA. In addition, the interaction of Rtr1 with RNA pol II depends on the phosphorylation state of CTD, which also influences Rpb4/7 dissociation during transcription. In this work, we demonstrate that Rtr1 acts in RNA pol II assembly, likely in a final cytoplasmic RNA pol II biogenesis step, and mediates the Rpb4 association with the rest of the enzyme, However, we do not rule out discard a role in the Rpb4 association with RNA pol II in the nucleus. This role of Rtr1 interplays RNA pol II biogenesis and mRNA decay regulation. In fact, RTR1 deletion alters RNA pol II assembly and leads to the chromatin association of RNA pol II lacking Rpb4, in addition to whole RNA pol II, decreasing mRNA-Rpb4 imprinting and, consequently, increasing mRNA stability. Notably, the RPB5 overexpression that overcomes RNA pol II assembly and the defect in Rpb4 binding to chromatin-associated RNA pol II partially suppresses the mRNA stability defect of rtr1Δ cells. Our data also indicate that Rtr1 mediates mRNA decay regulation more broadly than previously proposed in cooperation with Rpb4 and Dhh1. Interestingly, these data include new layers in the crosstalk between mRNA synthesis and decay.


2004 ◽  
Vol 24 (2) ◽  
pp. 846-855 ◽  
Author(s):  
Erica Y. Jacobs ◽  
Ikuo Ogiwara ◽  
Alan M. Weiner

ABSTRACT U small nuclear RNAs (snRNAs) and mRNAs are both transcribed by RNA polymerase II (Pol II), but the snRNAs have unusual TATA-less promoters and are neither spliced nor polyadenylated; instead, 3′ processing is directed by a highly conserved 3′ end formation signal that requires initiation from an snRNA promoter. Here we show that the C-terminal domain (CTD) of Pol II is required for efficient U2 snRNA transcription, as it is for mRNA transcription. However, CTD kinase inhibitors, such as 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7), that block mRNA elongation do not affect U2 transcription, although 3′ processing of the U2 primary transcript is impaired. We show further that U2 transcription is preferentially inhibited by low doses of UV irradiation or actinomycin D, which induce CTD kinase activity, and that UV inhibition can be rescued by treatment with DRB or H7. We propose that Pol II complexes transcribing snRNAs and mRNAs have distinct CTD phosphorylation patterns. mRNA promoters recruit factors including kinases that hyperphosphorylate the CTD, and the CTD in turn recruits proteins needed for mRNA splicing and polyadenylation. We predict that snRNA promoters recruit factors including a CTD kinase(s) whose snRNA-specific phosphorylation pattern recruits factors required for promoter-coupled 3′ end formation.


2005 ◽  
Vol 25 (17) ◽  
pp. 7665-7674 ◽  
Author(s):  
Rob D. Chapman ◽  
Marcus Conrad ◽  
Dirk Eick

ABSTRACT The C-terminal domain (CTD) of mammalian RNA polymerase II (Pol II) consists of 52 repeats of the consensus heptapeptide YSPTSPS and links transcription to the processing of pre-mRNA. The length of the CTD and the number of repeats diverging from the consensus sequence have increased through evolution, but their functional importance remains unknown. Here, we show that the deletion of repeats 1 to 3 or 52 leads to cleavage and degradation of the CTD from Pol II in vivo. Including these repeats, however, allowed the construction of stable, synthetic CTDs. To our surprise, polymerases consisting of just consensus repeats could support normal growth and viability of cells. We conclude that all other nonconsensus CTD repeats are dispensable for the transcription and pre-mRNA processing of genes essential for proliferation.


2002 ◽  
Vol 22 (5) ◽  
pp. 1577-1588 ◽  
Author(s):  
Makoto Kimura ◽  
Hisako Suzuki ◽  
Akira Ishihama

ABSTRACT In transcriptional regulation, RNA polymerase II (pol II) interacts and forms complexes with a number of protein factors. To isolate and identify the pol II-associated proteins, we constructed a Schizosaccharomyces pombe strain carrying a FLAG tag sequence fused to the rpb3 gene encoding the pol II subunit Rpb3. By immunoaffinity purification with anti-FLAG antibody-resin, a pol II complex containing the Rpb1 subunit with a nonphosphorylated carboxyl-terminal domain (CTD) was isolated. In addition to the pol II subunits, the complex was found to contain three subunits of a transcription factor TFIIF (TFIIFα, TFIIFβ, and Tfg3) and TFIIF-interacting CTD-phosphatase Fcp1. The same type of pol II complex could also be purified from an Fcp1-tagged strain. The isolated Fcp1 showed CTD-phosphatase activity in vitro. The fcp1 gene is essential for cell viability. Fcp1 and pol II interacted directly in vitro. Furthermore, by chemical cross-linking, glutathione S-transferase pulldown, and affinity chromatography, the Fcp1-interacting subunit of pol II was identified as Rpb4, which plays regulatory roles in transcription. We also constructed an S. pombe thiamine-dependent rpb4 shut-off system. On repression of rpb4 expression, the cell produced more of the nonphosphorylated form of Rpb1, but the pol II complex isolated with the anti-FLAG antibody contained less Fcp1 and more of the phosphorylated form of Rpb1 with a concomitant reduction in Rpb4. This result indicates the importance of Fcp1-Rpb4 interaction for formation of the Fcp1/TFIIF/pol II complex in vivo.


1999 ◽  
Vol 19 (10) ◽  
pp. 6833-6844 ◽  
Author(s):  
Myung K. Kim ◽  
Vera M. Nikodem

ABSTRACT This study describes a potential new function of hnRNP U as an RNA polymerase (Pol II) elongation inhibitor. We demonstrated that a subfraction of human hnRNP U is associated with the Pol II holoenzyme in vivo and as such recruited to the promoter as part of the preinitiation complex. hnRNP U, however, appears to dissociate from the Pol II complex at the early stage of transcription and is therefore absent from the elongating Pol II complex. When tested in the human immunodeficiency virus type 1 transcription system, hnRNP U inhibits elongation rather than initiation of transcription by Pol II. This inhibition requires the carboxy-terminal domain (CTD) of Pol II. We showed that hnRNP U can bind TFIIH in vivo under certain conditions and inhibit TFIIH-mediated CTD phosphorylation in vitro. We find that the middle domain of hnRNP U is sufficient to mediate its Pol II association and its inhibition of TFIIH-mediated phosphorylation and Pol II elongation. The abilities of hnRNP U to inhibit TFIIH-mediated CTD phosphorylation and its Pol II association are necessary for hnRNP U to mediate the repression of Pol II elongation. Based on these observations, we suggest that a subfraction of hnRNP U, as a component of the Pol II holoenzyme, may downregulate TFIIH-mediated CTD phosphorylation in the basal transcription machinery and repress Pol II elongation. With such functions, hnRNP U might provide one of the mechanisms by which the CTD is maintained in an unphosphorylated state in the Pol II holoenzyme.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1037 ◽  
Author(s):  
Cho ◽  
Kim ◽  
Baek ◽  
Kim ◽  
Lee

Rho GDP dissociation inhibitors (RhoGDIs) play important roles in various cellular processes, including cell migration, adhesion, and proliferation, by regulating the functions of the Rho GTPase family. Dissociation of Rho GTPases from RhoGDIs is necessary for their spatiotemporal activation and is dynamically regulated by several mechanisms, such as phosphorylation, sumoylation, and protein interaction. The expression of RhoGDIs has changed in many human cancers and become associated with the malignant phenotype, including migration, invasion, metastasis, and resistance to anticancer agents. Here, we review how RhoGDIs control the function of Rho GTPases by regulating their spatiotemporal activity and describe the regulatory mechanisms of the dissociation of Rho GTPases from RhoGDIs. We also discuss the role of RhoGDIs in cancer progression and their potential uses for therapeutic intervention.


2010 ◽  
Vol 30 (21) ◽  
pp. 5180-5193 ◽  
Author(s):  
Alicia García ◽  
Emanuel Rosonina ◽  
James L. Manley ◽  
Olga Calvo

ABSTRACT The transcriptional coactivator Sub1 has been implicated in several aspects of mRNA metabolism in yeast, such as activation of transcription, termination, and 3′-end formation. Here, we present evidence that Sub1 plays a significant role in controlling phosphorylation of the RNA polymerase II large subunit C-terminal domain (CTD). We show that SUB1 genetically interacts with the genes encoding all four known CTD kinases, SRB10, KIN28, BUR1, and CTK1, suggesting that Sub1 acts to influence CTD phosphorylation at more than one step of the transcription cycle. To address this directly, we first used in vitro kinase assays, and we show that, on the one hand, SUB1 deletion increased CTD phosphorylation by Kin28, Bur1, and Ctk1 but, on the other, it decreased CTD phosphorylation by Srb10. Second, chromatin immunoprecipitation assays revealed that SUB1 deletion decreased Srb10 chromatin association on the inducible GAL1 gene but increased Kin28 and Ctk1 chromatin association on actively transcribed genes. Taken together, our data point to multiple roles for Sub1 in the regulation of CTD phosphorylation throughout the transcription cycle.


1998 ◽  
Vol 18 (4) ◽  
pp. 2130-2142 ◽  
Author(s):  
Lei Lei ◽  
Delin Ren ◽  
Ann Finkelstein ◽  
Zachary F. Burton

ABSTRACT Transcription factor IIF (TFIIF) cooperates with RNA polymerase II (pol II) during multiple stages of the transcription cycle including preinitiation complex assembly, initiation, elongation, and possibly termination and recycling. Human TFIIF appears to be an α2β2 heterotetramer of RNA polymerase II-associating protein 74- and 30-kDa subunits (RAP74 and RAP30). From inspection of its 517-amino-acid (aa) sequence, the RAP74 subunit appears to comprise separate N- and C-terminal domains connected by a flexible loop. In this study, we present functional data that strongly support this model for RAP74 architecture and further show that the N- and C-terminal domains and the central loop of RAP74 have distinct roles during separate phases of the transcription cycle. The N-terminal domain of RAP74 (minimally aa 1 to 172) is sufficient to deliver pol II into a complex formed on the adenovirus major late promoter with the TATA-binding protein, TFIIB, and RAP30. A more complete N-terminal domain fragment (aa 1 to 217) strongly stimulates both accurate initiation and elongation by pol II. The region of RAP74 between aa 172 and 205 and a subregion between aa 170 and 178 are critical for both accurate initiation and elongation, and mutations in these regions have similar effects on initiation and elongation. Based on these observations, RAP74 appears to have similar functions in initiation and elongation. The central region and the C-terminal domain of RAP74 do not contribute strongly to single-round accurate initiation or elongation stimulation but do stimulate multiple-round transcription in an extract system.


Sign in / Sign up

Export Citation Format

Share Document