scholarly journals Emerging single-phase state in small manganite nanodisks

2016 ◽  
Vol 113 (33) ◽  
pp. 9228-9231 ◽  
Author(s):  
Jian Shao ◽  
Hao Liu ◽  
Kai Zhang ◽  
Yang Yu ◽  
Weichao Yu ◽  
...  

In complex oxides systems such as manganites, electronic phase separation (EPS), a consequence of strong electronic correlations, dictates the exotic electrical and magnetic properties of these materials. A fundamental yet unresolved issue is how EPS responds to spatial confinement; will EPS just scale with size of an object, or will the one of the phases be pinned? Understanding this behavior is critical for future oxides electronics and spintronics because scaling down of the system is unavoidable for these applications. In this work, we use La0.325Pr0.3Ca0.375MnO3 (LPCMO) single crystalline disks to study the effect of spatial confinement on EPS. The EPS state featuring coexistence of ferromagnetic metallic and charge order insulating phases appears to be the low-temperature ground state in bulk, thin films, and large disks, a previously unidentified ground state (i.e., a single ferromagnetic phase state emerges in smaller disks). The critical size is between 500 nm and 800 nm, which is similar to the characteristic length scale of EPS in the LPCMO system. The ability to create a pure ferromagnetic phase in manganite nanodisks is highly desirable for spintronic applications.

2018 ◽  
Author(s):  
Ibukun Makinde

Gas condensates are liquid mixtures of high-boiling hydrocarbons of various structures, separated from natural gases during their production at gas condensate fields. When transporting gas through pipelines, the following gas quality conditions should be met:i.During transportation, gases should not cause corrosion of pipelines, fittings, instruments, etc.ii.The quality of the gas must ensure its transportation in a single-phase state i.e., liquid hydrocarbons, gas condensates and hydrates should not form in the pipelines.In order for gas condensates to meet the above-mentioned quality conditions during storage or transportation, they must be stabilized. Gas condensate stabilization is the process of “boiling off” light hydrocarbons from the condensate that would otherwise increase the vapor pressure when conditions are fluctuating.


Author(s):  
Phan Thành Nam ◽  
Marcin Napiórkowski

AbstractWe consider the homogeneous Bose gas on a unit torus in the mean-field regime when the interaction strength is proportional to the inverse of the particle number. In the limit when the number of particles becomes large, we derive a two-term expansion of the one-body density matrix of the ground state. The proof is based on a cubic correction to Bogoliubov’s approximation of the ground state energy and the ground state.


Author(s):  
M. Yu. Tashmetov ◽  
F. K. Khallokov ◽  
N. B. Ismatov ◽  
I. I. Yuldashova ◽  
S. Kh. Umarov

It is shown that the replacement of a part of sulfur atoms with selenium atoms in a TlInS2 single crystal stimulates the formation of a single-phase state with a monoclinic structure (space group [Formula: see text]/[Formula: see text] in TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]). Irradiation with 2 MeV electrons and a fluence of [Formula: see text] electron/cm2 of powder TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) leads to an increase in the crystallite size from 56.5 nm to 65 nm, which is most likely associated with a decrease in the interface. The difference between the surface morphology of the synthesized TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) single crystal and the surface morphology of the TlInS2 single crystal is established, which consists in a decrease in the height and width of the roughness in TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]). Irradiation of a TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) single crystal with electrons with a fluence of [Formula: see text] electron/cm2 does not lead to a change in the height of the tubercle on its surface, and the average value of its width increases more than ten-fold. The identity of the peaks in the Raman spectra of the TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) single crystal before and after its irradiation with electrons with an energy of 2 MeV and upto a fluence of [Formula: see text] electron/cm2, along with the absence of a shift of the peaks, indicates the radiation resistance of the TlInS[Formula: see text]Se[Formula: see text] ([Formula: see text]) single crystal.


2006 ◽  
Vol 20 (30n31) ◽  
pp. 5081-5092 ◽  
Author(s):  
L. REATTO ◽  
M. ROSSI ◽  
D. E. GALLI

We address the question if the ground state of solid 4 He has the number of lattice sites equal to the number of atoms (commensurate state) or if it is different (incommensurate state). We point out that energy computation from simulation as performed by now cannot be used to decide this question and that the presently best variational wave function, a shadow wave function, gives an incommensurate state. We have extended the calculation of the one–body density matrix ρ1 to the exact Shadow Path Integral Ground State method. Calculation of ρ1 at ρ = 0.031 Å-3 shows that Vacancy–Interstitial pair processes are present also in the exact computation but the simulated system size is too small to infer the presence of off–diagonal long range order. Variational simulations of 4 He confined in a narrow cylindrical pore are also discussed.


2015 ◽  
Vol 19 (01-03) ◽  
pp. 527-534
Author(s):  
Kamlesh Awasthi ◽  
Hung-Yu Hsu ◽  
Hung-Chu Chiang ◽  
Chi-Lun Mai ◽  
Chen-Yu Yeh ◽  
...  

Polarized electroabsorption (E-A) spectra of highly efficient porphyrin sensitizers (YD2 and YD2-oC8) have been measured in benzene solution. Polarized E-A spectra of these push–pull porphyrins embedded in poly(methyl methacrylate) films or sensitized on TiO 2 films are also observed. Based on the analysis of the E-A spectra, the magnitude of the electric dipole moment both in the ground state and in the lowest excited state have been evaluated in solution and in solid films. The electric dipole moment in the excited state of these compounds is very large on TiO 2 films, suggesting the interfacial charge transfer on TiO 2 surface following photoexcitation of porphyrin dyes. The electric dipole moment in the excited state evaluated from the E-A spectra is very different from the one evaluated from the electrophotoluminescence spectra on TiO 2, suggesting that the strong local field of TiO 2 films is applied to the fluorescing dyes attached to TiO 2 films.


Sign in / Sign up

Export Citation Format

Share Document