scholarly journals Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K

2016 ◽  
Vol 113 (52) ◽  
pp. 14921-14925 ◽  
Author(s):  
Yuntao Xu ◽  
Nikolay G. Petrik ◽  
R. Scott Smith ◽  
Bruce D. Kay ◽  
Greg A. Kimmel

Understanding deeply supercooled water is key to unraveling many of water’s anomalous properties. However, developing this understanding has proven difficult due to rapid and uncontrolled crystallization. Using a pulsed-laser–heating technique, we measure the growth rate of crystalline ice, G(T), for 180 K < T < 262 K, that is, deep within water’s “no man’s land” in ultrahigh-vacuum conditions. Isothermal measurements of G(T) are also made for 126 K ≤ T ≤ 151 K. The self-diffusion of supercooled liquid water, D(T), is obtained from G(T) using the Wilson–Frenkel model of crystal growth. For T > 237 K and P ∼ 10−8 Pa, G(T) and D(T) have super-Arrhenius (“fragile”) temperature dependences, but both cross over to Arrhenius (“strong”) behavior with a large activation energy in no man’s land. The fact that G(T) and D(T) are smoothly varying rules out the hypothesis that liquid water’s properties have a singularity at or near 228 K at ambient pressures. However, the results are consistent with a previous prediction for D(T) that assumed no thermodynamic transitions occur in no man’s land.

2016 ◽  
Vol 144 (16) ◽  
pp. 164201 ◽  
Author(s):  
Yuntao Xu ◽  
Collin J. Dibble ◽  
Nikolay G. Petrik ◽  
R. Scott Smith ◽  
Alan G. Joly ◽  
...  

Carbon ◽  
1999 ◽  
Vol 37 (2) ◽  
pp. 231-239 ◽  
Author(s):  
Randy L Vander Wal ◽  
Mun Y Choi

2000 ◽  
Author(s):  
D. H. Chen ◽  
Z. M. Zhang

Abstract A simplified finite element model is built to study the thermal response of the 193-nm pulsed-laser calorimeter. The nonequivalence between pulsed-laser heating and electrical heating is estimated to be 0.46% at the thermocouple locations by comparing the calibration factors for average-power laser heating and electrical heating. This study should help the development of calibration and measurement standards in pulsed energy measurements for deep ultraviolet excimer lasers that are important for photolithographic and materials processing applications.


2009 ◽  
Vol 108 (2) ◽  
pp. 125-130 ◽  
Author(s):  
V. V. Girzhon ◽  
A. V. Smolyakov ◽  
N. G. Babich ◽  
M. P. Semen’ko

1981 ◽  
Vol 128 (8) ◽  
pp. 1798-1803 ◽  
Author(s):  
D. J. Godfrey ◽  
A. C. Hill ◽  
C. Hill

2018 ◽  
Vol 440 ◽  
pp. 73-83 ◽  
Author(s):  
Young Woo Seo ◽  
Andreas Rosenkranz ◽  
Frank E. Talke

2019 ◽  
Vol 44 (12) ◽  
pp. 1608-1612
Author(s):  
Tugba Isik ◽  
Xiaohui Xu ◽  
Steven F. Son ◽  
I. Emre Gunduz ◽  
Volkan Ortalan

Science ◽  
2020 ◽  
Vol 369 (6510) ◽  
pp. 1490-1492
Author(s):  
Loni Kringle ◽  
Wyatt A. Thornley ◽  
Bruce D. Kay ◽  
Greg A. Kimmel

A fundamental understanding of the unusual properties of water remains elusive because of the limited data at the temperatures and pressures needed to decide among competing theories. We investigated the structural transformations of transiently heated supercooled water films, which evolved for several nanoseconds per pulse during fast laser heating before quenching to 70 kelvin (K). Water’s structure relaxed from its initial configuration to a steady-state configuration before appreciable crystallization. Over the full temperature range investigated, all structural changes were reversible and reproducible by a linear combination of high- and low-temperature structural motifs. The fraction of the liquid with the high-temperature motif decreased rapidly as the temperature decreased from 245 to 190 K, consistent with the predictions of two-state “mixture” models for supercooled water in the supercritical regime.


Sign in / Sign up

Export Citation Format

Share Document