scholarly journals DNA damage tolerance in hematopoietic stem and progenitor cells in mice

2017 ◽  
Vol 114 (33) ◽  
pp. E6875-E6883 ◽  
Author(s):  
Bas Pilzecker ◽  
Olimpia Alessandra Buoninfante ◽  
Paul van den Berk ◽  
Cesare Lancini ◽  
Ji-Ying Song ◽  
...  

DNA damage tolerance (DDT) enables bypassing of DNA lesions during replication, thereby preventing fork stalling, replication stress, and secondary DNA damage related to fork stalling. Three modes of DDT have been documented: translesion synthesis (TLS), template switching (TS), and repriming. TLS and TS depend on site-specific PCNA K164 monoubiquitination and polyubiquitination, respectively. To investigate the role of DDT in maintaining hematopoietic stem cells (HSCs) and progenitors, we used PcnaK164R/K164R mice as a unique DDT-defective mouse model. Analysis of the composition of HSCs and HSC-derived multipotent progenitors (MPPs) revealed a significantly reduced number of HSCs, likely owing to increased differentiation of HSCs toward myeloid/erythroid-associated MPP2s. This skewing came at the expense of the number of lymphoid-primed MPP4s, which appeared to be compensated for by increased MPP4 proliferation. Furthermore, defective DDT decreased the numbers of MPP-derived common lymphoid progenitor (CLP), common myeloid progenitor (CMP), megakaryocyte-erythroid progenitor (MEP), and granulocyte-macrophage progenitor (GMP) cells, accompanied by increased cell cycle arrest in CMPs. The HSC and MPP phenotypes are reminiscent of premature aging and stressed hematopoiesis, and indeed progressed with age and were exacerbated on cisplatin exposure. Bone marrow transplantations revealed a strong cell intrinsic defect of DDT-deficient HSCs in reconstituting lethally irradiated mice and a strong competitive disadvantage when cotransplanted with wild-type HSCs. These findings indicate a critical role of DDT in maintaining HSCs and progenitor cells, and in preventing premature aging.

2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Yitian Guo ◽  
Melanie Rall-Scharpf ◽  
Jean-Christophe Bourdon ◽  
Lisa Wiesmüller ◽  
Stephanie Biber

AbstractThe recently discovered p53-dependent DNA damage tolerance (DDT) pathway relies on its biochemical activities in DNA-binding, oligomerization, as well as complex formation with the translesion synthesis (TLS) polymerase iota (POLι). These p53-POLι complexes slow down nascent DNA synthesis for safe, homology-directed bypass of DNA replication barriers. In this study, we demonstrate that the alternative p53-isoforms p53β, p53γ, Δ40p53α, Δ133p53α, and Δ160p53α differentially affect this p53-POLι-dependent DDT pathway originally described for canonical p53α. We show that the C-terminal isoforms p53β and p53γ, comprising a truncated oligomerization domain (OD), bind PCNA. Conversely, N-terminally truncated isoforms have a reduced capacity to engage in this interaction. Regardless of the specific loss of biochemical activities required for this DDT pathway, all alternative isoforms were impaired in promoting POLι recruitment to PCNA in the chromatin and in decelerating DNA replication under conditions of enforced replication stress after Mitomycin C (MMC) treatment. Consistent with this, all alternative p53-isoforms no longer stimulated recombination, i.e., bypass of endogenous replication barriers. Different from the other isoforms, Δ133p53α and Δ160p53α caused a severe DNA replication problem, namely fork stalling even in untreated cells. Co-expression of each alternative p53-isoform together with p53α exacerbated the DDT pathway defects, unveiling impaired POLι recruitment and replication deceleration already under unperturbed conditions. Such an inhibitory effect on p53α was particularly pronounced in cells co-expressing Δ133p53α or Δ160p53α. Notably, this effect became evident after the expression of the isoforms in tumor cells, as well as after the knockdown of endogenous isoforms in human hematopoietic stem and progenitor cells. In summary, mimicking the situation found to be associated with many cancer types and stem cells, i.e., co-expression of alternative p53-isoforms with p53α, carved out interference with p53α functions in the p53-POLι-dependent DDT pathway.


Author(s):  
Ramya Dewi Mathialagan ◽  
Zariyantey Abd Hamid ◽  
Qing Min Ng ◽  
Nor Fadilah Rajab ◽  
Salwati Shuib ◽  
...  

Hematopoietic stem/progenitor cells (HSPCs) are susceptible to benzene-induced genotoxicity. However, little is known about the mechanism of DNA damage response affecting lineage-committed progenitors for myeloid, erythroid, and lymphoid. Here, we investigated the genotoxicity of a benzene metabolite, 1,4-benzoquinone (1,4-BQ), in HSPCs using oxidative stress and lineage-directed approaches. Mouse bone marrow cells (BMCs) were exposed to 1,4-BQ (1.25–12 μM) for 24 h, followed by oxidative stress and genotoxicity assessments. Then, the genotoxicity of 1,4-BQ in lineage-committed progenitors was evaluated using colony forming cell assay following 7–14 days of culture. 1,4-BQ exposure causes significant decreases (p < 0.05) in glutathione level and superoxide dismutase activity, along with significant increases (p < 0.05) in levels of malondialdehyde and protein carbonyls. 1,4-BQ exposure induces DNA damage in BMCs by significantly (p < 0.05) increased percentages of DNA in tail at 7 and 12 μM and tail moment at 12 μM. We found crucial differences in genotoxic susceptibility based on percentages of DNA in tail between lineage-committed progenitors. Myeloid and pre-B lymphoid progenitors appeared to acquire significant DNA damage as compared with the control starting from a low concentration of 1,4-BQ exposure (2.5 µM). In contrast, the erythroid progenitor showed significant damage as compared with the control starting at 5 µM 1,4-BQ. Meanwhile, a significant (p < 0.05) increase in tail moment was only notable at 7 µM and 12 µM 1,4-BQ exposure for all progenitors. Benzene could mediate hematological disorders by promoting bone marrow oxidative stress and lineage-specific genotoxicity targeting HSPCs.


2020 ◽  
Author(s):  
E. A. Alekseeva ◽  
T. A. Evstyukhina ◽  
V. T. Peshekhonov ◽  
V. G. Korolev

Abstract In eukaryotes, DNA damage tolerance (DDT) is determined by two repair pathways, homologous repair recombination (HRR) and a pathway controlled by the RAD6-epistatic group of genes. Monoubiquitylation of PCNA mediates an error-prone pathway, whereas polyubiquitylation stimulates an error-free pathway. The error-free pathway involves components of recombination repair; however, the factors that act in this pathway remain largely unknown. Here, we report that the HIM1 gene participates in error-free DDT. Notably, inactivation RAD30 gene encoding Polη completely suppresses him1-dependent UV mutagenesis. Furthermore, data obtained show a significant role of Polη in him1-dependent mutagenesis, especially at non-bipyrimidine sites (NBP sites). We demonstrate that him1 mutation significantly reduces the efficiency of the induction expression of RNR genes after UV irradiation. Besides, this paper presents evidence that significant increase in the dNTP levels suppress him1-dependent mutagenesis. Our findings show that Polη responsible for him1-dependent mutagenesis.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 797-797
Author(s):  
Krasimira Rozenova ◽  
Jing Jiang ◽  
Chao Wu ◽  
Junmin Wu ◽  
Bernadette Aressy ◽  
...  

Abstract The balance between self-renewal and differentiation of hematopoietic stem cells (HSCs) is maintained by cell intrinsic and extrinsic mechanisms, including tight regulation of signaling pathways such as Tpo-Mpl and SCF-ckit. Posttranslational modifications, such as phosphorylation and ubiquitination, regulate these pathways. While the role of protein phosphorylation is well established, the importance of ubiquitination in HSC self-renewal has not been well addressed. It is known that of the seven different lysines on ubiquitin, Lys48 polyubiquitination is a marker for protein degradation, and Lys63 polyubiquitination is associated with regulation of kinase activity, protein trafficking, and localization. In this study, we provide evidence that the adaptor protein MERIT40 has multiple roles in hematopoietic stem/progenitor cells (HSPCs). MERIT40 is a scaffolding protein shared by two distinct complexes with Lys63 deubiquitinase (DUB) activities: the nuclear RAP80 complex with a known role in DNA damage repair in breast/ovarian cancer cells, whereas the functions of the cytoplasmic BRISC remains less characterized. MERIT40 is important for integrity of both complexes, and its deficiency leads to their destabilization and a >90% reduction in deubiquitinase activity. By using MERIT40 knockout (M40-/-) mice, we found that lack of MERIT40 leads to a two-fold increase in phenotypic and functional HSCs determined by FACS and limiting dilution bone marrow transplantation (BMT), respectively. More importantly, M40-/- HSCs have increased regenerative capability demonstrated by increased chimerism in the peripheral blood after BMT of purified HSCs. The higher self-renewal potential of these HSCs provides a survival advantage to M40-/- mice and HSCs after repetitive administration of the cytotoxic agent 5-flurouracil (5FU). MERIT40 deficiency also preserves HSC stemness in culture as judged by an increase in peripheral blood chimerism in recipient mice transplanted with M40-/- Lin-Sca1+Kit+ (LSK) cells cultured in cytokines for nine days compared to recipient mice receiving cultured wildtype (WT) LSK cells. In contrast to the increased HSC homeostasis and superior stem cell activity due to MERIT40 deficiency, M40-/- mice are hypersensitive to DNA damaging agents caused by inter-cross linking (ICL), such as Mitomycin C (MMC) and acetaldehydes that are generated as side products of intracellular metabolism. MMC injection caused increased mortality in M40-/- mice compared to WT controls attributable to DNA damage-induced bone marrow failure. MMC-treated M40-/- mice showed marked reduction in LSK progenitor numbers accompanied by increased DNA damage, in comparison to WT mice. Consistent with the in vivo studies, M40-/- progenitor cells are hypersensitive to MMC and acetaldehyde treatment in a cell-autonomous manner in colony forming assays. ICL repair is known to require Fanconi Anemia (FA) proteins, an ICL repair network of which mutations in at least 15 different genes in humans cause bone marrow failure and cancer predisposition. Thus, M40-/- mice represent a novel mouse model to study ICL repair in HSPCs with potential relevance to bone marrow failure syndromes. Taken together, our data establishes a complex role of MERIT40 in HSPCs, warranting future investigation to decipher functional events downstream of two distinct deubiquitinating complexes associated with MERIT40 that may regulate distinct aspects of HSPC function. Furthermore, our findings reveal novel regulatory pathways involving a previously unappreciated role of K63-DUB in stem cell biology, DNA repair regulation and possibly bone marrow failure. DUBs are specialized proteases and have emerged as potential “druggable” targets for a variety of diseases. Hence, our work may provide insights into novel therapies for the treatment of bone marrow failure and associated malignancies that occur in dysregulated HSCs. Disclosures: No relevant conflicts of interest to declare.


DNA Repair ◽  
2010 ◽  
Vol 9 (3) ◽  
pp. 257-267 ◽  
Author(s):  
Ildiko Unk ◽  
Ildikó Hajdú ◽  
András Blastyák ◽  
Lajos Haracska

2019 ◽  
Vol 47 (14) ◽  
pp. 7163-7181 ◽  
Author(s):  
Bas Pilzecker ◽  
Olimpia Alessandra Buoninfante ◽  
Heinz Jacobs

AbstractThe DNA damage response network guards the stability of the genome from a plethora of exogenous and endogenous insults. An essential feature of the DNA damage response network is its capacity to tolerate DNA damage and structural impediments during DNA synthesis. This capacity, referred to as DNA damage tolerance (DDT), contributes to replication fork progression and stability in the presence of blocking structures or DNA lesions. Defective DDT can lead to a prolonged fork arrest and eventually cumulate in a fork collapse that involves the formation of DNA double strand breaks. Four principal modes of DDT have been distinguished: translesion synthesis, fork reversal, template switching and repriming. All DDT modes warrant continuation of replication through bypassing the fork stalling impediment or repriming downstream of the impediment in combination with filling of the single-stranded DNA gaps. In this way, DDT prevents secondary DNA damage and critically contributes to genome stability and cellular fitness. DDT plays a key role in mutagenesis, stem cell maintenance, ageing and the prevention of cancer. This review provides an overview of the role of DDT in these aspects.


Toxics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 107
Author(s):  
Paik Wah Chow ◽  
Zariyantey Abd Hamid ◽  
Ramya Dewi Mathialagan ◽  
Nor Fadilah Rajab ◽  
Salwati Shuib ◽  
...  

Previous reports on hematotoxicity and leukemogenicity related to benzene exposure highlighted its adverse effects on hematopoiesis. Despite the reported findings, studies concerning the mechanism of benzene affecting chromosomal integrity in lineage-committed hematopoietic stem/progenitor cells (HSPCs) remain unclear. Here, we studied the clastogenicity and aneugenicity of benzene in lineage-committed HSPCs via karyotyping. Isolated mouse bone marrow cells (MBMCs) were exposed to the benzene metabolite 1,4-benzoquinone (1,4-BQ) at 1.25, 2.5, 5, 7, and 12 μM for 24 h, followed by karyotyping. Then, the chromosomal aberration (CA) in 1,4-BQ-exposed hematopoietic progenitor cells (HPCs) comprising myeloid, Pre-B lymphoid, and erythroid lineages were evaluated following colony-forming cell (CFC) assay. Percentage of CA, predominantly via Robertsonian translocation (Rb), was increased significantly (p < 0.05) in MBMCs and all progenitors at all concentrations. As a comparison, Pre-B lymphoid progenitor demonstrated a significantly higher percentage of CA (p < 0.05) than erythroid progenitor at 1.25, 2.5, and 7 μM as well as a significantly higher percentage (p < 0.05) than myeloid progenitor at 7 μM of 1,4-BQ. In conclusion, 1,4-BQ induced CA, particularly via Rb in both MBMCs and HPCs, notably via a lineage-dependent response. The role of lineage specificity in governing the clastogenicity and aneugenicity of 1,4-BQ deserves further investigation.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1155-1155
Author(s):  
Stefanie Kreutmair ◽  
Rouzanna Istvanffy ◽  
Cathrin Klingeberg ◽  
Christine Dierks ◽  
Christian Peschel ◽  
...  

Abstract Accumulation of DNA damage in hematopoietic stem cells (HSCs) is associated with aging, bone marrow failure and development of hematological malignancies. Although HSCs numerically expand with age, their functional activity declines over time and the protection mechanism from DNA damage accumulation remains to be elucidated. NIPA (Nuclear Interaction Partner of ALK) is highly expressed in hematopoietic stem and progenitor cells, especially in the most primitive long-term repopulating HSCs (CD34-Flt3-Lin-Sca1+cKit+). Loss of NIPA leads to a significant exhaustion of primitive hematopoietic cells, where Lin-Sca1+cKit+ (LSK) cells were reduced to 40% of wildtype (wt) littermates (p<0.001). All LSK-subgroups, LT-HSCs (p<0.001), ST-HSCs (CD34+Flt3-LSK; p<0.01) and MPPs (CD34+Flt3+LSK; p<0.05) of NIPA deficient animals are affected and failed to age-related increase, whereas the lineage differentiation of Nipako/ko progenitor cells showed no gross differences. Myeloid depression by 5-FU treatment led to severely reduced HSC self renewal in Nipako/ko mice independent of age (p<0.001). Moreover, weekly 5-FU activation showed reduced survival of Nipako/ko vs. wt animals (11 vs. 14.5 days). To further examine the role of NIPA in HSC maintenance and exhaustion, we performed in vivo repopulationexperiments, where Nipa deletion causes bone marrow failure in case of competition, as Nipako/ko cells contributed to less than 10% of transplanted BM cells 6 month after transplantation (TX). According to this, colony formation assays and limiting dilution transplantation showed a dramatic reduction of competitive repopulation units (p<0.0001) in Nipako/ko animals. Serial LSK transplantation assays revealed loss of Nipa-deficient LSKs shortly after TX, whereas long-term repopulation capacity seemed to be maintained, suggesting a role of NIPA in critical stress response. To further investigate the stress response in Nipa-deficient HSCs, we irradiated LSKs with 3 Gy and stained for DNA-Damage foci by pH2ax. Remarkably, loss of NIPA led to significant higher numbers of pH2ax foci in irradiated HSCs (46% > 6 foci vs. 17% > 6 foci in wt cells) and highly increased the rates of apoptotic cells especially in the primitive CD34-LSK population. Taken together our results highlight the importance of the DNA damage response at HSC level for lifelong hematopoiesis and establish NIPA as a novel regulator of aging and stress response of the primitive HSC pool. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document