truncated isoforms
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Daisuke Shimura ◽  
Esther Nuebel ◽  
Rachel Baum ◽  
Steven E Valdez ◽  
Shaohua Xiao ◽  
...  

The Connexin43 gap junction gene GJA1 has one coding exon, but its mRNA undergoes internal translation to generate N-terminal truncated isoforms of Connexin43 with the predominant isoform being only 20 kDa in size (GJA1-20k). Endogenous GJA1-20k protein is not membrane bound and has been found to increase in response to ischemic stress, localize to mitochondria, and mimic ischemic preconditioning protection in the heart. However, it is not known how GJA1-20k benefits mitochondria to provide this protection. Here, using human cells and mice, we identify that GJA1-20k polymerizes actin around mitochondria which induces focal constriction sites. Mitochondrial fission events occur within about 45 s of GJA1-20k recruitment of actin. Interestingly, GJA1-20k mediated fission is independent of canonical Dynamin-Related Protein 1 (DRP1). We find that GJA1-20k-induced smaller mitochondria have decreased reactive oxygen species (ROS) generation and, in hearts, provide potent protection against ischemia-reperfusion injury. The results indicate that stress responsive internally translated GJA1-20k stabilizes polymerized actin filaments to stimulate non-canonical mitochondrial fission which limits ischemic-reperfusion induced myocardial infarction.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Yitian Guo ◽  
Melanie Rall-Scharpf ◽  
Jean-Christophe Bourdon ◽  
Lisa Wiesmüller ◽  
Stephanie Biber

AbstractThe recently discovered p53-dependent DNA damage tolerance (DDT) pathway relies on its biochemical activities in DNA-binding, oligomerization, as well as complex formation with the translesion synthesis (TLS) polymerase iota (POLι). These p53-POLι complexes slow down nascent DNA synthesis for safe, homology-directed bypass of DNA replication barriers. In this study, we demonstrate that the alternative p53-isoforms p53β, p53γ, Δ40p53α, Δ133p53α, and Δ160p53α differentially affect this p53-POLι-dependent DDT pathway originally described for canonical p53α. We show that the C-terminal isoforms p53β and p53γ, comprising a truncated oligomerization domain (OD), bind PCNA. Conversely, N-terminally truncated isoforms have a reduced capacity to engage in this interaction. Regardless of the specific loss of biochemical activities required for this DDT pathway, all alternative isoforms were impaired in promoting POLι recruitment to PCNA in the chromatin and in decelerating DNA replication under conditions of enforced replication stress after Mitomycin C (MMC) treatment. Consistent with this, all alternative p53-isoforms no longer stimulated recombination, i.e., bypass of endogenous replication barriers. Different from the other isoforms, Δ133p53α and Δ160p53α caused a severe DNA replication problem, namely fork stalling even in untreated cells. Co-expression of each alternative p53-isoform together with p53α exacerbated the DDT pathway defects, unveiling impaired POLι recruitment and replication deceleration already under unperturbed conditions. Such an inhibitory effect on p53α was particularly pronounced in cells co-expressing Δ133p53α or Δ160p53α. Notably, this effect became evident after the expression of the isoforms in tumor cells, as well as after the knockdown of endogenous isoforms in human hematopoietic stem and progenitor cells. In summary, mimicking the situation found to be associated with many cancer types and stem cells, i.e., co-expression of alternative p53-isoforms with p53α, carved out interference with p53α functions in the p53-POLι-dependent DDT pathway.


IUBMB Life ◽  
2021 ◽  
Author(s):  
Sana Fatima ◽  
Shoyab Ansari ◽  
Shadabi Bano ◽  
Shahzaib Ahamad ◽  
Hassan Mubarak Ishqi ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Qingan Jia ◽  
Binghui Xu ◽  
Yaoyao Zhang ◽  
Arshad Ali ◽  
Xia Liao

The crosstalk between tumor cells and the tumor microenvironment (TME), triggers a variety of critical signaling pathways and promotes the malignant progression of cancer. The success rate of cancer therapy through targeting single molecule of this crosstalk may be extremely low, whereas co-targeting multiple components could be complicated design and likely to have more side effects. The six members of cellular communication network (CCN) family proteins are scaffolding proteins that may govern the TME, and several studies have shown targeted therapy of CCN family proteins may be effective for the treatment of cancer. CCN protein family shares similar structures, and they mutually reinforce and neutralize each other to serve various roles that are tightly regulated in a spatiotemporal manner by the TME. Here, we review the current knowledge on the structures and roles of CCN proteins in different types of cancer. We also analyze CCN mRNA expression, and reasons for its diverse relationship to prognosis in different cancers. In this review, we conclude that the discrepant functions of CCN proteins in different types of cancer are attributed to diverse TME and CCN truncated isoforms, and speculate that targeting CCN proteins to rebalance the TME could be a potent anti-cancer strategy.


2020 ◽  
pp. jlr.RA120000919
Author(s):  
Yueming Hu ◽  
Cristiana Meuret ◽  
Ashley Martinez ◽  
Hussein Yassine ◽  
Dobrin Nedelkov

Apolipoproteins C-I, C-II and C-III interact with ApoE to regulate lipoprotein metabolism and contribute to Alzheimer’s disease pathophysiology. In plasma, apoC-I and C-II exist as truncated isoforms, while apoC-III exhibits multiple glycoforms. This study aimed to 1. delineate apoC-I, C-II and C-III isoform profiles in CSF and plasma in a cohort of non-demented older individuals (n = 61), and 2. examine the effect of APOE4 on these isoforms and their correlation with CSF Aβ42, a surrogate of brain amyloid accumulation. The isoforms of the apoCs were immunoaffinity enriched and measured with MALDI-TOF mass spectrometry, revealing a significantly higher percentage of truncated apoC-I and apoC-II in CSF compared to matched plasma, with positive correlation between CSF and plasma. A greater percentage of monosialylated and disialylated apoC-III isoforms was detected in CSF, accompanied by a lower percentage of the two non-sialylated apoC-III isoforms, with significant linear correlations between CSF and plasma. Furthermore, a greater percentage of truncated apoC-I in CSF, and apoC-II in plasma and CSF, was observed in individuals carrying at least one apoE Ɛ4 allele. Increased apoC-I and apoC-II truncations were  associated with lower CSF Aβ42. Finally, monosialylated apoC-III was lower, and disialylated apoC-III greater in the CSF of Ɛ4 carriers. Together, these results reveal distinct patterns of the apoCs isoforms in CSF, implying CSF-specific apoCs processing. These patterns were accentuated in APOE Ɛ4 allele carriers, suggesting an association between APOE4 genotype and Alzheimer’s disease pathology with apoCs processing and function in the brain.


2020 ◽  
Author(s):  
Jayanthi P. Gudikote ◽  
Tina Cascone ◽  
Alissa Poteete ◽  
Piyada Sitthideatphaiboon ◽  
Qiuyu Wu ◽  
...  

ABSTRACTCommon mechanisms for p53 loss in cancer include expression of MDM2 or the human papilloma virus (HPV)-encoded E6 protein which both mediate degradation of wild-type (WT) p53 (p53α). Here, we show that two alternatively-spliced, functional, truncated isoforms of p53 (p53β and p53γ, containing exons 1-9 of the p53 gene) can be markedly upregulated by pharmacologic or genetic inhibition of nonsense mediated decay (NMD), a regulator of aberrant mRNA stability. These isoforms lack the MDM2 binding domain and hence have reduced susceptibility to MDM2-mediated degradation. In MDM2-overexpressing cells bearing wildtype TP53 gene, NMD blockade increased p53β/γ expression and p53 pathway activation, enhanced radiosensitivity, and inhibited tumor growth. A similar pattern was observed in HPV+ cancer cells and in cancer cells with p53 mutations downstream of exon 9. These results identify a novel therapeutic strategy for restoration of p53 function in tumors rendered p53 deficient through MDM2 overexpression, HPV infection, or certain p53 mutations.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 473
Author(s):  
Irina Epifantseva ◽  
Shaohua Xiao ◽  
Rachel E. Baum ◽  
André G. Kléber ◽  
TingTing Hong ◽  
...  

Connexin 43 (Cx43) is a gap junction protein that assembles at the cell border to form intercellular gap junction (GJ) channels which allow for cell–cell communication by facilitating the rapid transmission of ions and other small molecules between adjacent cells. Non-canonical roles of Cx43, and specifically its C-terminal domain, have been identified in the regulation of Cx43 trafficking, mitochondrial preconditioning, cell proliferation, and tumor formation, yet the mechanisms are still being explored. It was recently identified that up to six truncated isoforms of Cx43 are endogenously produced via alternative translation from internal start codons in addition to full length Cx43, all from the same mRNA produced by the gene GJA1. GJA1-11k, the 11kDa alternatively translated isoform of Cx43, does not have a known role in the formation of gap junction channels, and little is known about its function. Here, we report that over expressed GJA1-11k, unlike the other five truncated isoforms, preferentially localizes to the nucleus in HEK293FT cells and suppresses cell growth by limiting cell cycle progression from the G0/G1 phase to the S phase. Furthermore, these functions are independent of the channel-forming full-length Cx43 isoform. Understanding the apparently unique role of GJA1-11k and its generation in cell cycle regulation may uncover a new target for affecting cell growth in multiple disease models.


2019 ◽  
Author(s):  
Ning Zhang ◽  
Shundi Shi ◽  
Xuanting Wang ◽  
Wenhao Ni ◽  
Xiaohong Yuan ◽  
...  

AbstractWe report a direct method for sequencing tRNAPhe without cDNA by combining 2-dimensional hydrophobic RNA end-labeling with an anchor-based algorithm in mass spectrometry-based sequencing (2D-HELS-AA MS Seq). The entire tRNAPhe was sequenced and the identity, location and abundance of all 11 base modifications were determined. Changes in ratios of wybutosine and its depurinated form under different conditions were quantified, pointing to the ability of our technology to determine dynamic changes of nucleotide modifications. Two truncated isoforms at 3’CCA tail of the tRNAPhe (75 nt CC, 80% and 74 nt C, 3%) were identified in addition to the 76 nt tRNAPhe with a full-length 3’CCA tail (17%). We also discovered a new isoform with A-G transitions at both the 44 and 45 positions in the tRNAPhe variable loop.One Sentence SummaryDirect 2D-HELS-AA MS Seq of tRNA reveals different isoforms and base modifications


2019 ◽  
Author(s):  
Francesco Aulicino ◽  
Francesco Sottile ◽  
Elisa Pedone ◽  
Frederic Lluis ◽  
Lucia Marucci ◽  
...  

AbstractThe Wnt/β-catenin signalling pathway is a key regulator of embryonic stem cell self-renewal and differentiation. Constitutive activation of this pathway has been shown to significantly increase mouse embryonic stem cell (mESC) self-renewal and pluripotency marker expression. In this study, we generated a novel β-catenin knock-out model in mESCs by using CRISPR/Cas9 technology to delete putatively functional N-terminally truncated isoforms observed in previous knock-out models. While we showed that aberrant N-terminally truncated isoforms are not functional in mESCS, we observed that canonical Wnt signalling is not active in mESCs, as β-catenin ablation does not alter mESC transcriptional profile in LIF-enriched culture conditions; on the other hand, Wnt signalling activation represses mESC spontaneous differentiation. We also showed that transcriptionally silent β-catenin (ΔC) isoforms can rescue β-catenin knock-out self-renewal defects in mESCs, cooperating with TCF1 and LEF1 in the inhibition of mESC spontaneous differentiation in a Gsk3 dependent manner.


2019 ◽  
Author(s):  
Kaitlin Weskamp ◽  
Elizabeth M. Tank ◽  
Roberto Miguez ◽  
Jonathon P. McBride ◽  
Nicolás B. Gómez ◽  
...  

AbstractCortical hyperexcitability and mislocalization of the RNA-binding protein TDP43 are highly-conserved features in amyotrophic lateral sclerosis (ALS). Nevertheless, the relationship between these phenomena remains poorly defined. Here, we showed that hyperexcitability recapitulates TDP43 pathology by upregulating shortened (s) TDP43 splice isoforms. These truncated isoforms accumulated in the cytoplasm and formed insoluble inclusions that sequestered full-length TDP43 via preserved N-terminal interactions. Consistent with these findings, sTDP43 overexpression was toxic to mammalian neurons, suggesting neurodegeneration arising from complementary gain- and loss-of-function mechanisms. In humans and mice, sTDP43 transcripts were enriched in vulnerable motor neurons, and we observed a striking accumulation of sTDP43 within neurons and glia of ALS patients. Collectively, these studies uncover a pathogenic role for alternative TDP43 isoforms in ALS, and implicate sTDP43 as a key contributor to the susceptibility of motor neurons in this disorder.


Sign in / Sign up

Export Citation Format

Share Document