scholarly journals Anti–PD-1/anti–CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8+ T cell trafficking

2018 ◽  
Vol 115 (7) ◽  
pp. E1540-E1549 ◽  
Author(s):  
David Taggart ◽  
Tereza Andreou ◽  
Karen J. Scott ◽  
Jennifer Williams ◽  
Nora Rippaus ◽  
...  

Inhibition of immune checkpoints programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) on T cells results in durable antitumor activity in melanoma patients. Despite high frequency of melanoma brain metastases (BrM) and associated poor prognosis, the activity and mechanisms of immune checkpoint inhibitors (ICI) in metastatic tumors that develop within the “immune specialized” brain microenvironment, remain elusive. We established a melanoma tumor transplantation model with intracranial plus extracranial (subcutaneous) tumor, mimicking the clinically observed coexistence of metastases inside and outside the brain. Strikingly, intracranial ICI efficacy was observed only when extracranial tumor was present. Extracranial tumor was also required for ICI-induced increase in CD8+ T cells, macrophages, and microglia in brain tumors, and for up-regulation of immune-regulatory genes. Combined PD-1/CTLA-4 blockade had a superior intracranial efficacy over the two monotherapies. Cell depletion studies revealed that NK cells and CD8+ T cells were required for intracranial anti–PD-1/anti–CTLA-4 efficacy. Rather than enhancing CD8+ T cell activation and expansion within intracranial tumors, PD-1/CTLA-4 blockade dramatically (∼14-fold) increased the trafficking of CD8+ T cells to the brain. This was mainly through the peripheral expansion of homing-competent effector CD8+ T cells and potentially further enhanced through up-regulation of T cell entry receptors intercellular adhesion molecule 1 and vascular adhesion molecule 1 on tumor vasculature. Our study indicates that extracranial activation/release of CD8+ T cells from PD-1/CTLA-4 inhibition and potentiation of their recruitment to the brain are paramount to the intracranial anti–PD-1/anti–CTLA-4 activity, suggesting augmentation of these processes as an immune therapy-enhancing strategy in metastatic brain cancer.

Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 886-896 ◽  
Author(s):  
David Sancho ◽  
Marı́a Yáñez-Mó ◽  
Reyes Tejedor ◽  
Francisco Sánchez-Madrid

Abstract Cell adhesion molecules have a key role in the migration of T cells to inflammatory foci. However, the effect of the endothelial-lymphocyte interaction on the activation of the latter cells remains unresolved. We have studied the effect of resting and stimulated endothelial cells (ECs) on the activation of peripheral blood T cells (PBTLs), as assessed by the expression of CD69 and CD25 activation antigens. The incubation of PBTLs with tumor necrosis factor-–activated EC monolayers, either alive or fixed, induced the expression of CD69 but not CD25, preferentially in the CD8+CD45RO+ cell subset. Furthermore, it induced the production of cytokines such as IFN-γ, but not that of interleukin-2 (IL-2) and IL-4. EC treated with other stimuli such as IL-1β, IFN-γ, or lipopolysaccharide also showed the same proactivatory effect on T cells. Lymphocyte activation was almost completely inhibited by blocking anti-CD18 and anti–intercellular adhesion molecule-1 (anti–ICAM-1) monoclonal antibodies (MoAbs), but only slightly affected by MoAbs against CD49d, vascular cell adhesion molecule-1, and anti–IL-15. In addition, the interaction of PBTL with immobilized ICAM-1 induced CD69 expression in the same memory T-cell subset. IL-15 induced T-cell activation with expression of CD69 and CD25, and production of IFN-γ, and its effect was additive with that triggered by cell adhesion to either EC or immobilized ICAM-1. The transmigration of PBTLs through either confluent EC monolayers or ICAM-1–coated membranes also induced efficiently the expression of CD69. When IL-15 was used as chemoattractant in these assays, a further enhancement in CD69 expression was observed in migrated cells. Together these results indicate that stimulated endothelium may have an important role in T-cell activation, through the lymphocyte function antigen-1/ICAM-1 pathway, and that IL-15 efficiently cooperates in this phenomenon. These observations could account for the abundance of CD69+ cells in the lymphocytic infiltrates of several chronic inflammatory diseases.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 886-896 ◽  
Author(s):  
David Sancho ◽  
Marı́a Yáñez-Mó ◽  
Reyes Tejedor ◽  
Francisco Sánchez-Madrid

Cell adhesion molecules have a key role in the migration of T cells to inflammatory foci. However, the effect of the endothelial-lymphocyte interaction on the activation of the latter cells remains unresolved. We have studied the effect of resting and stimulated endothelial cells (ECs) on the activation of peripheral blood T cells (PBTLs), as assessed by the expression of CD69 and CD25 activation antigens. The incubation of PBTLs with tumor necrosis factor-–activated EC monolayers, either alive or fixed, induced the expression of CD69 but not CD25, preferentially in the CD8+CD45RO+ cell subset. Furthermore, it induced the production of cytokines such as IFN-γ, but not that of interleukin-2 (IL-2) and IL-4. EC treated with other stimuli such as IL-1β, IFN-γ, or lipopolysaccharide also showed the same proactivatory effect on T cells. Lymphocyte activation was almost completely inhibited by blocking anti-CD18 and anti–intercellular adhesion molecule-1 (anti–ICAM-1) monoclonal antibodies (MoAbs), but only slightly affected by MoAbs against CD49d, vascular cell adhesion molecule-1, and anti–IL-15. In addition, the interaction of PBTL with immobilized ICAM-1 induced CD69 expression in the same memory T-cell subset. IL-15 induced T-cell activation with expression of CD69 and CD25, and production of IFN-γ, and its effect was additive with that triggered by cell adhesion to either EC or immobilized ICAM-1. The transmigration of PBTLs through either confluent EC monolayers or ICAM-1–coated membranes also induced efficiently the expression of CD69. When IL-15 was used as chemoattractant in these assays, a further enhancement in CD69 expression was observed in migrated cells. Together these results indicate that stimulated endothelium may have an important role in T-cell activation, through the lymphocyte function antigen-1/ICAM-1 pathway, and that IL-15 efficiently cooperates in this phenomenon. These observations could account for the abundance of CD69+ cells in the lymphocytic infiltrates of several chronic inflammatory diseases.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii104-ii104
Author(s):  
Christopher Alvarez-Breckenridge ◽  
Samuel Markson ◽  
Jackson Stocking ◽  
Matt Lastrapes ◽  
Naema Nayyar ◽  
...  

Abstract Immune checkpoint inhibitors (ICI) have revolutionized oncologic treatment for metastatic melanoma. With improved systemic control, there has been increasing prevalence of patients with brain metastases. Recent evidence has demonstrated intracranial responses in a subset of these patients treated with ICI. We hypothesize that the response to ICI in melanoma brain metastases (MBM) is reflective of unique features within the tumor microenvironment of the brain. A cohort of 27 patients, encompassing 8 pre- and 19 post-immunotherapy MBM underwent single cell RNA sequencing (Smart-Seq2). The cohort includes patients with longitudinal cranial resections and simultaneously resected, spatially distinct tumors. Each tumor underwent unsupervised transcriptomic analysis, differential gene expression, inferred copy number variation, and T-cell receptor (TCR) clonotyping. Published extracranial melanoma single cell datasets were used to compare the tumor microenvironment of the brain and periphery in response to ICI. A total of 14,027 cells (6,189 malignant, 7,838 non-malignant) were sequenced. Brain metastases demonstrated a heterogeneous distribution of macrophage states. Intracranial macrophages were found to be more tumor-supportive than their extracranial counterparts. MBM also included a distribution of reactive neutrophils and astrocytes. Analysis across pre- and post-treatment MBM demonstrated an increase in clonally expanded T cells in patients responding to ICI. Across longitudinal brain metastases collected from the same patients, there was evidence of identical T cell clones across timepoints and locations. Single cell sequencing of MBM provides insights into the cellular composition of the tumor and microenvironment. Our data suggest the cellular heterogeneity within MBM is unique when compared to extracranial disease. Additionally, T cell clonal expansion is found following ICI and T cells of the same clonotype infiltrate spatially and temporally separated brain metastases. These findings raise potential therapeutic implications as we learn to target the differential features of the innate and adaptive immune system within brain metastases and their extracranial counterparts.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Bryan D Choi ◽  
Xiaoling Yu ◽  
Ana P Castano ◽  
Amanda A Bouffard ◽  
Andrea Schmidts ◽  
...  

Abstract INTRODUCTION Immune therapy with T cells engineered to express chimeric antigen receptors (CARs) represents a promising therapy for patients with glioblastoma (GBM). However, clinical responses have been limited due to heterogeneous target antigen expression and outgrowth of tumors lacking the antigen targeted by CAR T cells directed against a single target. In clinical studies with CART-EGFRvIII, EGFRvIII-targeted T cells successfully localized to the brain tumor microenvironment, but ultimately failed to prevent disease progression with post-treatment specimens demonstrating high levels of wild-type EGFR despite reduced expression of EGFRvIII. METHODS We developed a novel bicistronic CAR construct engineered for local delivery of bispecific T-cell engagers (BiTEs) that target residual tumor. Specifically, EGFRvIII-targeted CAR T cells were engineered to secrete BiTEs against wild-type EGFR, which is frequently amplified and overexpressed in GBM. RESULTS Human T cells were efficiently transduced with the dual CART.BiTE transgene. These modified cells secreted biologically active EGFR-specific BiTEs that not only redirected CAR T cells but also recruited and activated untransduced bystander T cells against wild-type EGFR. Recapitulating clinical data, EGFRvIII CAR T cells were unable to completely treat tumors with heterogenous EGFRvIII expression, leading to outgrowth of EGFRvIII-negative, EGFR-positive GBM. Conversely, CART.BiTE cells cured mice even in the setting of antigen-loss, against heterogeneous and well-established intracerebral tumors in mice. Unlike CAR T cells directly targeting EGFR, which caused toxicity in human skin grafts in vivo, secreted BiTE-EGFR was both locally effective and did not result in toxicity against grafted human skin. CONCLUSION This is the first instance in which CARs and BiTEs have been combined into a single platform of immune therapy. Our results demonstrate that CARs and BiTEs can be combined strategically to mitigate antigen heterogeneity in GBM and also provide a unique T-cell-based delivery method for BiTEs to tumors in the brain.


2018 ◽  
Vol 92 (8) ◽  
Author(s):  
E. Kip ◽  
J. Staal ◽  
L. Verstrepen ◽  
H. G. Tima ◽  
S. Terryn ◽  
...  

ABSTRACTMALT1 is involved in the activation of immune responses, as well as in the proliferation and survival of certain cancer cells. MALT1 acts as a scaffold protein for NF-κB signaling and a cysteine protease that cleaves substrates, further promoting the expression of immunoregulatory genes. Deregulated MALT1 activity has been associated with autoimmunity and cancer, implicating MALT1 as a new therapeutic target. Although MALT1 deficiency has been shown to protect against experimental autoimmune encephalomyelitis, nothing is known about the impact of MALT1 on virus infection in the central nervous system. Here, we studied infection with an attenuated rabies virus, Evelyn-Rotnycki-Abelseth (ERA) virus, and observed increased susceptibility with ERA virus in MALT1−/−mice. Indeed, after intranasal infection with ERA virus, wild-type mice developed mild transient clinical signs with recovery at 35 days postinoculation (dpi). Interestingly, MALT1−/−mice developed severe disease requiring euthanasia at around 17 dpi. A decreased induction of inflammatory gene expression and cell infiltration and activation was observed in MALT1−/−mice at 10 dpi compared to MALT1+/+infected mice. At 17 dpi, however, the level of inflammatory cell activation was comparable to that observed in MALT1+/+mice. Moreover, MALT1−/−mice failed to produce virus-neutralizing antibodies. Similar results were obtained with specific inactivation of MALT1 in T cells. Finally, treatment of wild-type mice with mepazine, a MALT1 protease inhibitor, also led to mortality upon ERA virus infection. These data emphasize the importance of early inflammation and activation of T cells through MALT1 for controlling the virulence of an attenuated rabies virus in the brain.IMPORTANCERabies virus is a neurotropic virus which can infect any mammal. Annually, 59,000 people die from rabies. Effective therapy is lacking and hampered by gaps in the understanding of virus pathogenicity. MALT1 is an intracellular protein involved in innate and adaptive immunity and is an interesting therapeutic target because MALT1-deregulated activity has been associated with autoimmunity and cancers. The role of MALT1 in viral infection is, however, largely unknown. Here, we study the impact of MALT1 on virus infection in the brain, using the attenuated ERA rabies virus in different models of MALT1-deficient mice. We reveal the importance of MALT1-mediated inflammation and T cell activation to control ERA virus, providing new insights in the biology of MALT1 and rabies virus infection.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i2-i2
Author(s):  
Pakawat Chongsathidkiet ◽  
Karolina Woroniecka ◽  
Cosette Dechant ◽  
Hanna Kemeny ◽  
Xiuyu Cui ◽  
...  

Abstract INTRODUCTION: Brain metastases remain one of the most dreaded consequences of late stage cancer, yet their incidence has risen as survival from primary cancers has improved. We have recently reported that tumors harbored within the brain, specifically, sequester T-cells within the bone marrow as a novel mechanism of immune evasion. Sequestration results from tumor-imposed loss of S1P1 receptor from the T-cell surface. Stabilization of the receptor on T-cells frees T-cells from sequestration and licenses T-cell activating therapies for intracranial tumors. While this phenomenon was initially uncovered in glioblastoma, its role in promoting immune-evasion in brain metastases remains less clear. METHODS: Blood, bone marrow, and tumors were collected from mice bearing intracranial tumors commonly metastatic to the brain, including lung carcinoma (LLC), melanoma (B16F10), or breast carcinoma (E0771) and analyzed by flow cytometry. T-cell S1P1 levels, as well as total T-cell counts were assessed in each compartment. Correlation analyses were conducted between T-cell counts and S1P1 levels on T-cells in the bone marrow across intracranial and subcutaneous murine tumor models. RESULTS: T-cell lymphopenia and accompanying accumulation of T-cells in the bone marrow were observed in the murine models of lung carcinoma, melanoma, and breast carcinoma, but only when these tumor lines were implanted intracranially. Sequestered T-cells in tumor-bearing mice showed decreased surface S1P1 levels in a manner correlating with their sequestration. CONCLUSION: S1P1-mediated bone marrow T-cell sequestration is a novel mode of cancer-induced T-cell dysfunction in intracranial tumors. Preventing receptor internalization abrogates T-cell sequestration and licenses T-cell activating therapies in glioblastoma. Sequestration is now observed in models of brain metastases. Pharmacologic strategies to stabilize S1P1, reverse sequestration, and restore circulating T-cell numbers are anticipated to improve immunotherapeutic efficacy for brain metastases.


2021 ◽  
Author(s):  
◽  
Cameron Field

<p>Glioblastoma Multiforme (GBM) is a malignant primary brain tumour with an extremely poor prognosis. Following surgical resection, radiotherapy, and concomitant and adjuvant chemotherapy, median survival is only 12-15 months. New therapeutic approaches are therefore desperately needed.  Accumulating evidence suggests that activated T cells are capable of selectively targeting and eliminating tumour cells, even in the brain, making vaccine-mediated immunotherapy a promising candidate for the treatment of brain cancers. However, cancer vaccination has generally been disappointing in the clinic, and is unlikely to bestow long-term survival unless suppressive mechanisms are overcome. Checkpoint blockade is a recent treatment modality that enhances naturally occurring T cell responses to cancer by relieving suppression mediated by immune checkpoints – molecular signals that prevent T cell function. While significant clinical responses are often seen, it is clear that most patients fail to respond to checkpoint blockade alone. Therefore, there is considerable interest in combining the different immunotherapeutic strategies, with vaccines providing an immunogenic stimulus to induce anti-tumour T cells, and checkpoint blockade to ensure T cell function is retained.  An orthotopic murine model of glioma was utilised to examine this form of combined treatment. Immune responses induced with a unique whole-cell vaccine that utilises the adjuvant properties of invariant natural killer T cells (iNKT cells) were able to resist tumour challenge, but failed to eradicate established tumours. When the vaccine was combined with blocking antibodies to the immune checkpoint molecule cytotoxic T lymphocyte antigen-4 (α-CTLA-4) regression of established intracranial tumours was observed, whereas α-CTLA-4 was ineffective as a monotherapy. In contrast, combining the vaccine with antibodies to programmed death-1 (α-PD-1) or lymphocyte activation gene-3 (LAG-3) failed to provide any survival advantage. This was despite α-PD-1 being effective against the same tumour implanted subcutaneously, suggesting efficacy in the orthotopic setting was limited by poor access of α-PD-1 to effector T cells within the brain.  The effective combination of vaccine and α-CTLA-4 was associated with enhanced proliferation and accumulation of T cells in the lymphoid tissues without any obvious changes in the adjuvant function of iNKT cells or altered numbers of regulatory T cells, suggesting recently primed T cells were the targets of checkpoint inhibition. While tumours regressing under this combined treatment were highly infiltrated with a variety of leukocytes, tumour eradication was strictly dependent on CD4⁺ T cells.  Further interrogation of the cell-types responsible for anti-tumour activity revealed that CD11b⁺ cells were required for therapy, although it remains to be established whether these cells were involved in T cell priming or served as anti-tumour effectors in their own right, possibly under the influence of activated CD4⁺ T cells. In addition, therapy was hampered, although not entirely eliminated, in hosts deficient in interferon-γ. Therapy was also reduced significantly, but not entirely, in hosts deficient in perforin. In vitro studies showed that restimulated splenocytes from animals that had received the combined therapy were able to kill glioma cells in a perforin and MHC-II dependent manner, suggesting that cytotoxic CD4⁺ T cells were important effector cells.  Overall, these results demonstrate that immunotherapeutic vaccination can be combined effectively with checkpoint blockade to induce effective immune responses against glioma. The immune response induced in combination with CTLA-4 blockade differs from many other cancer models, with a strict dependence on CD4⁺ T cells that can serve either as cytotoxic effector cells, or potentially as modulators of other accessory cells. Furthermore, the tumour location presents new challenges, with access of inhibitors to the brain, particularly important if immune checkpoints on intratumoural effector cells are to be targeted. In this context, strategies to improve access of checkpoint inhibitors like α-PD-1 and α-LAG3 to the brain warrant further investigation.</p>


2021 ◽  
Author(s):  
◽  
Cameron Field

<p>Glioblastoma Multiforme (GBM) is a malignant primary brain tumour with an extremely poor prognosis. Following surgical resection, radiotherapy, and concomitant and adjuvant chemotherapy, median survival is only 12-15 months. New therapeutic approaches are therefore desperately needed.  Accumulating evidence suggests that activated T cells are capable of selectively targeting and eliminating tumour cells, even in the brain, making vaccine-mediated immunotherapy a promising candidate for the treatment of brain cancers. However, cancer vaccination has generally been disappointing in the clinic, and is unlikely to bestow long-term survival unless suppressive mechanisms are overcome. Checkpoint blockade is a recent treatment modality that enhances naturally occurring T cell responses to cancer by relieving suppression mediated by immune checkpoints – molecular signals that prevent T cell function. While significant clinical responses are often seen, it is clear that most patients fail to respond to checkpoint blockade alone. Therefore, there is considerable interest in combining the different immunotherapeutic strategies, with vaccines providing an immunogenic stimulus to induce anti-tumour T cells, and checkpoint blockade to ensure T cell function is retained.  An orthotopic murine model of glioma was utilised to examine this form of combined treatment. Immune responses induced with a unique whole-cell vaccine that utilises the adjuvant properties of invariant natural killer T cells (iNKT cells) were able to resist tumour challenge, but failed to eradicate established tumours. When the vaccine was combined with blocking antibodies to the immune checkpoint molecule cytotoxic T lymphocyte antigen-4 (α-CTLA-4) regression of established intracranial tumours was observed, whereas α-CTLA-4 was ineffective as a monotherapy. In contrast, combining the vaccine with antibodies to programmed death-1 (α-PD-1) or lymphocyte activation gene-3 (LAG-3) failed to provide any survival advantage. This was despite α-PD-1 being effective against the same tumour implanted subcutaneously, suggesting efficacy in the orthotopic setting was limited by poor access of α-PD-1 to effector T cells within the brain.  The effective combination of vaccine and α-CTLA-4 was associated with enhanced proliferation and accumulation of T cells in the lymphoid tissues without any obvious changes in the adjuvant function of iNKT cells or altered numbers of regulatory T cells, suggesting recently primed T cells were the targets of checkpoint inhibition. While tumours regressing under this combined treatment were highly infiltrated with a variety of leukocytes, tumour eradication was strictly dependent on CD4⁺ T cells.  Further interrogation of the cell-types responsible for anti-tumour activity revealed that CD11b⁺ cells were required for therapy, although it remains to be established whether these cells were involved in T cell priming or served as anti-tumour effectors in their own right, possibly under the influence of activated CD4⁺ T cells. In addition, therapy was hampered, although not entirely eliminated, in hosts deficient in interferon-γ. Therapy was also reduced significantly, but not entirely, in hosts deficient in perforin. In vitro studies showed that restimulated splenocytes from animals that had received the combined therapy were able to kill glioma cells in a perforin and MHC-II dependent manner, suggesting that cytotoxic CD4⁺ T cells were important effector cells.  Overall, these results demonstrate that immunotherapeutic vaccination can be combined effectively with checkpoint blockade to induce effective immune responses against glioma. The immune response induced in combination with CTLA-4 blockade differs from many other cancer models, with a strict dependence on CD4⁺ T cells that can serve either as cytotoxic effector cells, or potentially as modulators of other accessory cells. Furthermore, the tumour location presents new challenges, with access of inhibitors to the brain, particularly important if immune checkpoints on intratumoural effector cells are to be targeted. In this context, strategies to improve access of checkpoint inhibitors like α-PD-1 and α-LAG3 to the brain warrant further investigation.</p>


Sign in / Sign up

Export Citation Format

Share Document