scholarly journals Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti–PD-1 treatment

2018 ◽  
Vol 115 (17) ◽  
pp. E4041-E4050 ◽  
Author(s):  
Elisa Peranzoni ◽  
Jean Lemoine ◽  
Lene Vimeux ◽  
Vincent Feuillet ◽  
Sarah Barrin ◽  
...  

In a large proportion of cancer patients, CD8 T cells are excluded from the vicinity of cancer cells. The inability of CD8 T cells to reach tumor cells is considered an important mechanism of resistance to cancer immunotherapy. We show that, in human lung squamous-cell carcinomas, exclusion of CD8 T cells from tumor islets is correlated with a poor clinical outcome and with a low lymphocyte motility, as assessed by dynamic imaging on fresh tumor slices. In the tumor stroma, macrophages mediate lymphocyte trapping by forming long-lasting interactions with CD8 T cells. Using a mouse tumor model with well-defined stromal and tumor cell areas, macrophages were depleted with PLX3397, an inhibitor of colony-stimulating factor-1 receptor (CSF-1R). Our results reveal that a CSF-1R blockade enhances CD8 T cell migration and infiltration into tumor islets. Although this treatment alone has minor effects on tumor growth, its combination with anti–PD-1 therapy further increases the accumulation of CD8 T cells in close contact with malignant cells and delays tumor progression. These data suggest that the reduction of macrophage-mediated T cell exclusion increases tumor surveillance by CD8 T cells and renders tumors more responsive to anti–PD-1 treatment.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2623-2623 ◽  
Author(s):  
Bindu Varghese ◽  
Behnaz Taidi ◽  
Adam Widman ◽  
James Do ◽  
R. Levy

Abstract Introduction: Anti-idiotype antibodies against B cell lymphoma have shown remarkable success in causing tumor regression in the clinic. In addition to their known ability to mediate ADCC, anti-idiotype antibodies have also been shown to directly inhibit the proliferation of tumor cells by sending negative growth signals via the target idiotype. However, further studies to investigate this mechanism have been hindered by the failure of patient tumor cells to grow ex vivo. Methods and Results: In order to study this phenomenon further, we developed an antibody against the idiotype on an A20 mouse B lymphoma cell line. A radioactive thymidine incorporation assay showed decreased A20 cell proliferation in the presence of the anti-id antibody ex vivo. In vivo, when mice were treated intraperitoneally (i.p.) with 100 μg of antibody 3 hours post-tumor inoculation (1×106 A20 subcutaneously (s.c.)), tumor growth was delayed for greater than 40 days after which the tumor began to grow once again. Further analysis of these escaping tumor cells by flow cytometry showed that that the tumor cells escaped the antibody-mediated immune response by down-regulating expression of idiotype and IgG on their surfaces although the cells retained idiotype expression intracellularly. This down-regulation of surface idiotype rendered the tumor cells resistant to both ADCC and signaling-induced cell death. The addition of an immunostimulatory bacterial mimic (CpG-DNA; 100 μg × 5 intratumoral (i.t.) injections; Days 2, 3 4, 6 & 8) to antibody therapy (Day 0; 100 μg i.p.) cured large established tumors (Day 0 = 1 cm2) and prevented the occurrence of tumor escapees (p<0.0001). Antibody plus CpG combination therapy in tumor-bearing mice deficient for CD8+ T cells demonstrated the critical role of CD8+ T cells in A20 tumor eradication (p<0.005). Depletion of CD4+ T cells was found to have no significant impact on the therapy. We also found that when mice were inoculated with two tumors and treated with anti-idiotype antibody (i.p.) followed by intratumoral CpG in just one tumor (Day 0=1 cm2; anti-idiotype antibody 100 μg Day 0; 100 μg CpG Days 2, 3, 4, 6 & 8), untreated tumors regressed just as well as CpG-treated tumors indicating a systemic anti-tumor immune response was generated. Conclusion: Anti-idiotype therapy, although effective in delaying tumor growth, frequently generates antigen-loss variants. However, we found that when anti-idiotype antibodies were combined with CpG, even large established tumors were cured due to systemic CD8+ T cell-dependent tumor immunity. Rather than simply mediating ADCC against a single tumor antigen, which requires the constant infusion of antibody to hamper tumor growth, we hypothesize a cytotoxic T-cell response against many tumor antigens was also generated. Such a diverse T-cell repertoire can prevent the emergence of tumor escapees and collectively provide long-lasting tumor protection. These pre-clinical results suggest that anti-tumor antibodies combined with CpG warrant further study in patients with B cell lymphoma.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3117-3117
Author(s):  
Alan G. Ramsay ◽  
Lena Svensson ◽  
Nancy Hogg ◽  
John G. Gribben

Abstract We have previously demonstrated that multiple gene expression abnormalities are induced in T cells from chronic lymphocytic leukemia (CLL) patients including defects within the actin cytoskeleton signaling pathways that control immune recognition and motility (Gullu et al. JCI, 2005). T cell immune surveillance requires rapid migratory responses and LFA-1 (CD11a/CD18; αLβ2) is a promigratory receptor that engages the cytoskeleton to control migration. We hypothesized that CLL T cells may exhibit dysfunctional migration in response to ICAM-1, the principal ligand for LFA-1. Using time lapse microscopy, we observed significantly reduced chemokine SDF-1 (CXCL12) induced migration on ICAM-1 of CLL CD4 and CD8 T cells compared to age-matched healthy donor T cells. Healthy T cells tracked for 45 min displayed a random course of migration with an average speed of ~ 8 μm/min, whereas CLL T cells were slower ~ 5 μm/min (n=14, ~ 30% reduction, p<0.01). We further postulated that direct contact of CLL tumor cells with healthy T cells would induce this migratory defect. Healthy CD4 or CD8 T cells were cocultured with either allogeneic CLL B cells or allogeneic healthy B cells and subsequently used in migration assays. Co-culture with CLL cells resulted in significantly reduced T cell migration compared with co-culture with healthy B cells (~ 44% reduction in migration, n=6, p<0.01). Evidence that direct contact was required to induce this migratory defect was shown when no effect was observed when cell-cell adhesion was prevented by pretreatment of CLL cells with anti-ICAM-1 blocking antibody prior to primary co-culture with healthy T cells. This cancer-induced migratory defect was repaired when CLL T cells were pretreated with the immunomodulatory drug Lenalidomide (1μM for 1hr). Treatment with this agent enhanced the migratory potential of CLL T cells to a speed comparable to untreated and treated healthy T cells. The finding that lenalidomide can restore rapid migration in patient T cells provides evidence that this agent may increase immune surveillance in CLL patients.


Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2828-2833 ◽  
Author(s):  
Yiwen Li ◽  
Maurizio Bendandi ◽  
Yuping Deng ◽  
Cynthia Dunbar ◽  
Nikhil Munshi ◽  
...  

Immunoglobulin secreted by myeloma cells contains a unique antigenic determinant (idiotype [Id]) that may serve as a tumor-specific antigen. Although Id-protein–specific T-cell responses have been reported in patients with myeloma, it is not known whether primary myeloma tumor cells can present naturally processed Id peptides on their surface as a target. We immunized 2 healthy human stem-cell donors with Id proteins from their recipients. T cells from the immunized donors released high levels of T-helper 1–type cytokines in response to stimulation with myeloma cells from their recipients. The T-cell–mediated cytokine response to tumor cells was blocked by a major histocompatibility complex (MHC) class I monoclonal antibody, whereas the response to soluble Id protein was dependent on MHC class II. To investigate whether Id-specific CD8+ T cells can recognize and kill autologous myeloma cells, we generated T cells from peripheral blood mononuclear cells from a third patient with myeloma by means of in vitro stimulation with autologous dendritic cells pulsed with Id protein. Tumor-specific lysis of myeloma cells was demonstrated by the lack of killing of autologous nonmalignant B cells or natural killer–sensitive K562 cells. Lysis of autologous myeloma targets was restricted by MHC class I molecules. These data represent the first report of class I–restricted T-cell recognition of fresh autologous myeloma targets and formally demonstrate that human myeloma cells can serve as targets of an Id-specific T-cell response.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e18027-e18027
Author(s):  
Lihua Shi ◽  
Di Zhang ◽  
Susan Tam ◽  
Man-Cheong Fung

e18027 Background: Human papilloma virus (HPV) infection can lead to several types of cancers in both men and women. HPV+ tumor cells constitutively express the HPV-E7 antigen which can act as an oncogene to promote tumor growth and malignant transformation. Here, we report the application of novel Tavo Immune Modulator (TIM) biologics molecules which are consisted of a pMHC complex with an epitope peptide derived from HPV-E7 and co-stimulatory modulators of T cell activity. The HPV-E7 TIM molecules can specifically recognize and activate HPV-E7-specific T cells for the elimination of HPV affected cells. Methods: HPV-E7 TIM molecules were engineered as fusion molecules with HLA-A*02:01 MHC complexed with an HPV-E7 (11-20) epitope peptide at the N-termini, and various T cell costimulatory modulators at the C-termini of IgG heavy and light chains. TIM molecules were expressed in Expi293 cells and purified by Protein A affinity chromatography. Specific binding of TIM with HPV-E7 specific T cells was confirmed by immunostaining and flow cytometry. The activation and expansion of antigen specific CD8+ T cells were elucidated in T cell activation and recall assays. Results: HPV-E7 TIM molecules with various T cell co-stimulator molecules were engineered to specifically recognize HPV-specific T cells. Activation of T cells was antigen-specific and depended on the presence of an engineered T cell modulatory component on the TIM framework. The effects of various costimulatory molecules in different combinations on T cell activation were explored and an optimal combination was identified which facilitated high potency antigen-specific T cell activation. Such molecular combinations could facilitate T cell expansion and activation in T cell recall assays. Efficacy of HPV-E7 TIM molecules by inhibiting tumor growth in a syngeneic tumor model is ongoing. Conclusions: This study demonstrates that HPV-E7 TIM molecules selectively recognize and activate HPV-specific CD8+ T cells in the presence of a combination of two T cell costimulatory factors. Such novel biologics provide distinctive approaches in the treatment of HPV-related cancers and warrant further investigation. Additional in vitro and in vivo studies are ongoing to demonstrate the utility in eliminating HPV-infected tumor cells. Full data will be presented at the meeting.


1996 ◽  
Vol 183 (5) ◽  
pp. 2361-2366 ◽  
Author(s):  
J C Becker ◽  
J D Pancook ◽  
S D Gillies ◽  
K Furukawa ◽  
R A Reisfeld

Induction of a T-cell mediated antitumor response is the ultimate goal for tumor immunotherapy. We demonstrate here that antibody-targeted IL2 therapy is effective against established pulmonary and hepatic melanoma metastases in a syngeneic murine tumor model. The effector mechanisms involved in this tumor eradication are not dependent on NK cells, since the therapeutic effect of antibody-IL2 fusion protein was not altered in NK cell-deficient mice. In contrast, T cells are essential for the observed antitumor effect, since therapy with antibody IL2 fusion proteins is unable to induce tumor eradication in T cell-deficient SCID mice. In vivo depletion studies characterized the essential effector cell population further as CD8 + T cells. Such CD8 + T cells, isolated from tumor bearing mice after antibody-directed IL2 therapy, exerted a MHC class I-restricted cytotoxicity against the same tumor in vitro. These data demonstrate the ability of antibody-targeted IL2 delivery to induce a T cell-dependent host immune response that is capable of eradicating established melanoma metastases in clinically relevant organs.


2018 ◽  
Author(s):  
Tyler R. McCaw ◽  
Mei Li ◽  
Dmytro Starenki ◽  
Sara J. Cooper ◽  
Selene Meza-Perez ◽  
...  

AbstractThe expression of major histocompatibility complex II (MHCII) on tumor cells correlates with survival and responsiveness to immunotherapy. However, the mechanisms underlying these observations are poorly defined. Using a murine breast tumor line, we tested how MHCII expression affected anti-tumor immunity. We found that MHCII-expressing tumors grew more slowly than controls and recruited more functional CD4+ and CD8+ T cells. Additionally, MHCII-expressing tumors contained more TCR clonotypes expanded to a larger degree than control tumors. Functional CD8+ T cells in tumors depended on CD4+ T cells. However, both CD4+ and CD8+ T cells eventually became exhausted, even in MHCII-expressing tumors. PD1 blockade had no impact on tumor growth, potentially because tumor cells poorly expressed PD-L1. These results suggest tumor cell expression of MHCII facilitates the local activation of CD4+ T cells and indirectly helps the activation and expansion of CD8+ T cells, but by itself, cannot prevent T cell exhaustion.PrécisThe expression of MHCII on tumor cells augments CD4 and CD8 T cell responses, expands the TCR repertoire and delays exhaustion. Hence, strategies to induce MHCII expression may be a powerful adjuvant to immunotherapeutic regimens of solid tumors.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lihua Luo ◽  
Bing Qin ◽  
Mengshi Jiang ◽  
Lin Xie ◽  
Zhenyu Luo ◽  
...  

Abstract Background Photothermal therapy (PTT) is a highly effective treatment for solid tumors and can induce long-term immune memory worked like an in situ vaccine. Nevertheless, PTT inevitably encounters photothermal resistance of tumor cells, which hinders therapeutic effect or even leads to tumor recurrence. Naïve CD8+ T cells are mainly metabolized by oxidative phosphorylation (OXPHOS), followed by aerobic glycolysis after activation. And the differentiate of effector CD8+ T cell (CD8+ Teff) into central memory CD8+ T cell (CD8+ TCM) depends on fatty acid oxidation (FAO) to meet their metabolic requirements, which is regulated by adenosine monophosphate activated protein kinase (AMPK). In addition, the tumor microenvironment (TME) is severely immunosuppressive, conferring additional protection against the host immune response mediated by PTT. Methods Metformin (Met) down-regulates NADH/NADPH, promotes the FAO of CD8+ T cells by activating AMPK, increases the number of CD8+ TCM, which boosts the long-term immune memory of tumor-bearing mice treated with PTT. Here, a kind of PLGA microspheres co-encapsulated hollow gold nanoshells and Met (HAuNS-Met@MS) was constructed to inhibit the tumor progress. 2-Deoxyglucose (2DG), a glycolysis inhibitor for cancer starving therapy, can cause energy loss of tumor cells, reduce the heat stress response of tumor cell, and reverse its photothermal resistance. Moreover, 2DG prevents N-glycosylation of proteins that cause endoplasmic reticulum stress (ERS), further synergistically enhance PTT-induced tumor immunogenic cell death (ICD), and improve the effect of immunotherapy. So 2DG was also introduced and optimized here to solve the metabolic competition among tumor cells and immune cells in the TME. Results We utilized mild PTT effect of HAuNS to propose an in situ vaccine strategy based on the tumor itself. By targeting the metabolism of TME with different administration strategy of 2DG and perdurable action of Met, the thermotolerance of tumor cells was reversed, more CD8+ TCMs were produced and more effective anti-tumor was presented in this study. Conclusion The Step-by-Step starving-photothermal therapy could not only reverse the tumor thermotolerance, but also enhance the ICD and produce more CD8+ TCM during the treatment. Graphical Abstract


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3037-3037
Author(s):  
Haidong Dong ◽  
Svetomir Markovic ◽  
Christopher J Krco ◽  
Eugene D. Kwon

3037 Background: Tumor immunotherapies directed towards enhancing natural or endogenous anti-tumor T-cell immunity in patients with advanced malignancies are currently being implemented in clinic with promising results. In order to optimize therapeutic protocols and monitor the effectiveness of such therapies, a reliable T-cell marker is needed. Methods: We utilized CD11a (LFA-1, lymphocyte functional-associated antigen 1), an integrin up-regulated on effector and memory CD8 T-cells, and PD-1 (programmed death-1), an immunoregulatory receptor expressed by activated T cells, as biomarkers to identify, quantitate and monitor endogenous tumor-reactive cytotoxic lymphocytes (CTLs) in two mouse tumor models and the peripheral blood (PB) of 12 patients with stage IV melanoma. Results: High expression of CD11a and PD-1 was identified among CD8 T-cells residing within primary and metastatic murine tumor sites, as well as in spontaneous murine breast cancer tissues. In the PB of melanoma patients, tumor antigen-specific CD8 T cells were associated with a population of CD11a high CD8 T-cells which co-expressed high levels of PD-1, as opposed to eleven healthy donors who had a much lower frequency of PD-1+ CD11a high CD8 T-cells (p <0.0001). Phenotypic analysis showed that CD11a high CD8 T-cells are proliferating (Ki67 positive) activated (CD62L low, CD69 high) T-cells. Increased CD11a high CD8 T-cells and delayed tumor growth were observed in PD-1 deficient mice, suggesting that the antitumor effector function of CD8 T cells is compromised by co-expression of elevated levels of PD-1. Conclusions: CD11a high CD8 T-cell population expresses high levels of PD-1 and is likely the cellular target of PD-1 blockade therapy. High expression of CD11a (LFA-1) and PD-1 (CD279) by CD8 T-cells may represent a novel biomarker to identify and monitor endogenous tumor-reactive CTLs. This may not only provide an immunological readout for evaluating the efficacy of therapy, but also contribute to the selection of patients with solid malignancies likely to benefit from anti-PD-1 therapy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3746-3746
Author(s):  
Carina A Bäuerlein ◽  
Simone S Riedel ◽  
Brede Christian ◽  
Ana-Laura Jordán Garrote ◽  
Agnes Birner ◽  
...  

Abstract Abstract 3746 Acute graft-versus-host disease (aGvHD) is an immune syndrome after allogeneic hematopoietic cell transplantation (allo-HCT) caused by alloreactive donor T cells that attack the gastrointestinal tract, liver and skin. Thus, early T cell migration patterns to these organs could provide first cues for the onset of aGvHD. Hence, a unique surface marker profile of donor T cells at early time points after allo-HCT may be an indicator for patients at risk of aGVHD. Therefore, we analyzed the course of donor T cell activation, proliferation and homing in a clinical relevant murine MHC minor mismatch (miHAg) allo-HCT model to define critical time points and marker profiles for the detection of alloreactive T cells. Luciferase-labeled C57Bl/6 (H-2b) T cells plus bone marrow cells were transplanted into conditioned (8 Gy) MHC major mismatched Balb/c (H-2d) or miHAg Balb/b (H-2b) recipients. Donor T cell migration was visualized by in vivo bioluminescence imaging (BLI) and cells were characterized by multiparameter flow cytometry for 30 consecutive days after allo-HCT. GVHD scoring was performed by histopathology. Donor T cells proliferated exclusively in secondary lymphoid organs until day+3 (initiation phase) before migrating via the peripheral blood into target organs (effector phase). This occured in both models, MHC major mismatch and miHAg allo-HCT, which resulted in hyper-acute (starting at day+6) or acute GVHD (starting at day+21), respectively. In the hyper-acute scenario one wave of T cell migration starting at day+4 sufficed to cause lethal aGVHD. We detected a 4000-fold increase in CD4 and a 1500-fold increase in CD8 donor T cell numbers in the peripheral blood between day+3 and day+6 in this model. In contrast, in the more clinical relevant miHAg allo-HCT model we found 3 waves of T cell migration with peaks at days +6, +11 and +15 after allo-HCT. In the peripheral blood CD4 T cells increased 20-fold, CD8 T cells 50-fold between day+3 and day+6, but more than 40-fold (CD4) and 400-fold (CD8) between day+3 and day+11. After the third peak on day+15 a period followed when we could only detect very few migrating donor T cells in the peripheral blood before aGvHD became clinically apparent on day+21. Next, we asked whether we could identify alloreactive T cells by testing a large panel of surface markers at the defined migration peaks. Indeed, allogeneic T cells upregulated certain homing receptors at these peaks (e.g. at day+11: α4β7 integrin: 27% of CD4 T cells, 3.4×104/ml, 60% of CD8 T cells, 1.6×105/ml; P-selectin ligand: 28% of CD4 T cells, 3.5×104/ml, 35% of CD8 T cells, 9.1×104/ml). In contrast, syngeneic transplanted mice only showed a constant low expression level of those receptors (e.g. at day+11: α4β7 integrin: 20% of CD4 T cells, 9.6×103/ml, 5% of CD8 T cells, 3.1×103/ml; P-selectin ligand: 17% of CD4 T cells, 8.5×103/ml, 10% of CD8 T cells, 6.6×103/ml). However, other markers such as CD44 could be found on more than 80% of all donor T cells in allogeneic or syngeneic recipients. Our results in this clinical relevant mouse model show accelerating waves of T cell migration consistent with an enhancing feedback loop model of aGvHD pathogenesis. The homing receptor expression profile of donor T cells correlated with critical migration waves and clearly differed between mice with or without aGvHD. The assessment of critical time points frame a diagnostic window for a potential predictive test based on the dynamic change of the T cell homing receptor profile after allo-HCT. This preclinical study now awaits to be evaluated in patients undergoing allo-HCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 998-998
Author(s):  
Robert G. Newman ◽  
Eckhard R. Podack ◽  
Robert B. Levy

Abstract Abstract 998 Tumor relapse is still the major cause of morbidity and mortality in patients with hematologic cancers that undergo aggressive chemo-radiotherapy followed by autologous hematopoietic cell transplantation (auto-HCT). Hence, there is a critical need for new anti-tumor therapies. Heat shock protein (HSP) based vaccines elicit innate and adaptive immune responses in murine studies and have shown promise in clinical trials. The pre-clinical studies here investigated the efficacy of vaccination with tumor cells secreting the HSP fusion gp96-Ig together with directed IL-2 in tumor bearing auto-HCT recipients. To mimic clinical T cell replete auto-HCT, transplanted donor T cells were obtained from congenic tumor bearing mice (C57BL/6 CD45.2+ CD90.1+) that had been previously inoculated intraperitoneally (ip) with 4×106 OVA expressing lymphoma cells (E.G7). Some of these donor mice received 0.5×106 CD8 T cells specific for OVA257–264 (OT-I) to allow for tumor antigen specific T cell monitoring. Three weeks later, T cells were harvested from these animals bearing progressively growing tumor for use in T cell replete auto-HCT. Recipient mice (C57BL/6 CD45.2+ CD90.2+) received 9.5 Gy TBI with subsequent infusion of 5×106 congenic T cell depleted bone marrow cells (C57BL/6 CD45.1+ CD90.2+) supplemented with 2×106 enriched T cells from the tumor bearing donors. The following day, recipients were inoculated ip with 1×105 viable E.G7 lymphoma cells. Based on our prior findings, a multiple vaccination protocol was employed utilizing 1×107 irradiated E.G7 cells transfected to secrete the HSP fusion gp96-Ig (E.G7-gp96-Ig). Some recipients were administered IL-2 via specific antibody-cytokine complexes comprised of IL-2 and αIL-2 mAb clone S4B6 (IL-2/αIL-2CD122). This specific IL-2 complex has been shown to interact with cells expressing the β chain (CD122) of the IL-2 receptor, such as memory CD8 T cells and NK cells, but not with cells expressing the α chain (CD25). Compared to recipients of T cell replete auto-HCT vaccinated with parental E.G7 tumor cells who exhibited virtually no increase in antigen-specific CD8 T cells, marked expansion was detected in the blood after 2 vaccinations with E.G7-gp96-Ig, i.e. within 1 week of auto-HCT. This response reached a plateau after 3 vaccinations, and persisted throughout the 5 vaccine protocol. To quantitate this vaccine induced CD8 T cell expansion, analysis of the vaccine site, splenic and lymph node compartments was performed following 3 vaccinations, i.e. 2 weeks post-HCT. In contrast to the modest 25× increase observed after vaccination with parental E.G7 cells, a 175× expansion was detected following E.G7-gp96-Ig vaccination (6.8×106 vs. 3.8×104 input). Moreover, 75% of these gp96-Ig expanded CD8 T cells at the vaccine site were bifunctional, expressing IFN-γ and TNF-α following antigen specific stimulation ex vivo. Strikingly, combined treatment with vaccine cells secreting gp96-Ig together with IL-2/αIL-2CD122 complex resulted in a 1000× enhancement of antigen specific CD8 T cell numbers in all compartments analyzed. Tumor bearing auto-HCT recipients exhibited a median survival time (MST) of 1 month if not vaccinated or if vaccinated with parental E.G7 cells (Figure). However, vaccination with E.G7-gp96-Ig extended the MST by more than 2 weeks and ∼20% of recipients survived long term (>100 days). This effect was dependent on T cells since gp96-Ig vaccination alone without donor T cells resulted in no MST extension. Combination therapy with tumor cells secreting gp96-Ig and IL-2/αIL-2CD122 complex markedly elevated total CD8 T cells as well as NK cells at the vaccine site and in secondary lymphoid tissues, two populations that have been shown to facilitate HSP based vaccines. Notably, this strategy resulted in a MST >100 days with ∼60% of mice surviving indefinitely. We propose that 3 components are required together with auto-HCT to avoid relapse related mortality: (1) transplanted autologous T cells, (2) a pan-antigen vaccination approach that induces potent antigen presentation and activation of multiple antigen specific T cells, i.e. tumor cells secreting gp96-Ig, and (3) an adjuvant that potentiates this vaccine induced response, i.e. IL-2 delivered in the form of an antibody-cytokine complex. In total, this combinatorial protocol represents a promising regimen that could be translated into the clinic for patients with hematologic cancers. Disclosures: Podack: Heat Biologics, Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document