Combining Early Heat Shock Protein Vaccination with Directed IL-2 Leads to Effective Anti-Tumor Immunity in Autologous Hematopoietic Cell Transplantation Recipients

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 998-998
Author(s):  
Robert G. Newman ◽  
Eckhard R. Podack ◽  
Robert B. Levy

Abstract Abstract 998 Tumor relapse is still the major cause of morbidity and mortality in patients with hematologic cancers that undergo aggressive chemo-radiotherapy followed by autologous hematopoietic cell transplantation (auto-HCT). Hence, there is a critical need for new anti-tumor therapies. Heat shock protein (HSP) based vaccines elicit innate and adaptive immune responses in murine studies and have shown promise in clinical trials. The pre-clinical studies here investigated the efficacy of vaccination with tumor cells secreting the HSP fusion gp96-Ig together with directed IL-2 in tumor bearing auto-HCT recipients. To mimic clinical T cell replete auto-HCT, transplanted donor T cells were obtained from congenic tumor bearing mice (C57BL/6 CD45.2+ CD90.1+) that had been previously inoculated intraperitoneally (ip) with 4×106 OVA expressing lymphoma cells (E.G7). Some of these donor mice received 0.5×106 CD8 T cells specific for OVA257–264 (OT-I) to allow for tumor antigen specific T cell monitoring. Three weeks later, T cells were harvested from these animals bearing progressively growing tumor for use in T cell replete auto-HCT. Recipient mice (C57BL/6 CD45.2+ CD90.2+) received 9.5 Gy TBI with subsequent infusion of 5×106 congenic T cell depleted bone marrow cells (C57BL/6 CD45.1+ CD90.2+) supplemented with 2×106 enriched T cells from the tumor bearing donors. The following day, recipients were inoculated ip with 1×105 viable E.G7 lymphoma cells. Based on our prior findings, a multiple vaccination protocol was employed utilizing 1×107 irradiated E.G7 cells transfected to secrete the HSP fusion gp96-Ig (E.G7-gp96-Ig). Some recipients were administered IL-2 via specific antibody-cytokine complexes comprised of IL-2 and αIL-2 mAb clone S4B6 (IL-2/αIL-2CD122). This specific IL-2 complex has been shown to interact with cells expressing the β chain (CD122) of the IL-2 receptor, such as memory CD8 T cells and NK cells, but not with cells expressing the α chain (CD25). Compared to recipients of T cell replete auto-HCT vaccinated with parental E.G7 tumor cells who exhibited virtually no increase in antigen-specific CD8 T cells, marked expansion was detected in the blood after 2 vaccinations with E.G7-gp96-Ig, i.e. within 1 week of auto-HCT. This response reached a plateau after 3 vaccinations, and persisted throughout the 5 vaccine protocol. To quantitate this vaccine induced CD8 T cell expansion, analysis of the vaccine site, splenic and lymph node compartments was performed following 3 vaccinations, i.e. 2 weeks post-HCT. In contrast to the modest 25× increase observed after vaccination with parental E.G7 cells, a 175× expansion was detected following E.G7-gp96-Ig vaccination (6.8×106 vs. 3.8×104 input). Moreover, 75% of these gp96-Ig expanded CD8 T cells at the vaccine site were bifunctional, expressing IFN-γ and TNF-α following antigen specific stimulation ex vivo. Strikingly, combined treatment with vaccine cells secreting gp96-Ig together with IL-2/αIL-2CD122 complex resulted in a 1000× enhancement of antigen specific CD8 T cell numbers in all compartments analyzed. Tumor bearing auto-HCT recipients exhibited a median survival time (MST) of 1 month if not vaccinated or if vaccinated with parental E.G7 cells (Figure). However, vaccination with E.G7-gp96-Ig extended the MST by more than 2 weeks and ∼20% of recipients survived long term (>100 days). This effect was dependent on T cells since gp96-Ig vaccination alone without donor T cells resulted in no MST extension. Combination therapy with tumor cells secreting gp96-Ig and IL-2/αIL-2CD122 complex markedly elevated total CD8 T cells as well as NK cells at the vaccine site and in secondary lymphoid tissues, two populations that have been shown to facilitate HSP based vaccines. Notably, this strategy resulted in a MST >100 days with ∼60% of mice surviving indefinitely. We propose that 3 components are required together with auto-HCT to avoid relapse related mortality: (1) transplanted autologous T cells, (2) a pan-antigen vaccination approach that induces potent antigen presentation and activation of multiple antigen specific T cells, i.e. tumor cells secreting gp96-Ig, and (3) an adjuvant that potentiates this vaccine induced response, i.e. IL-2 delivered in the form of an antibody-cytokine complex. In total, this combinatorial protocol represents a promising regimen that could be translated into the clinic for patients with hematologic cancers. Disclosures: Podack: Heat Biologics, Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2623-2623 ◽  
Author(s):  
Bindu Varghese ◽  
Behnaz Taidi ◽  
Adam Widman ◽  
James Do ◽  
R. Levy

Abstract Introduction: Anti-idiotype antibodies against B cell lymphoma have shown remarkable success in causing tumor regression in the clinic. In addition to their known ability to mediate ADCC, anti-idiotype antibodies have also been shown to directly inhibit the proliferation of tumor cells by sending negative growth signals via the target idiotype. However, further studies to investigate this mechanism have been hindered by the failure of patient tumor cells to grow ex vivo. Methods and Results: In order to study this phenomenon further, we developed an antibody against the idiotype on an A20 mouse B lymphoma cell line. A radioactive thymidine incorporation assay showed decreased A20 cell proliferation in the presence of the anti-id antibody ex vivo. In vivo, when mice were treated intraperitoneally (i.p.) with 100 μg of antibody 3 hours post-tumor inoculation (1×106 A20 subcutaneously (s.c.)), tumor growth was delayed for greater than 40 days after which the tumor began to grow once again. Further analysis of these escaping tumor cells by flow cytometry showed that that the tumor cells escaped the antibody-mediated immune response by down-regulating expression of idiotype and IgG on their surfaces although the cells retained idiotype expression intracellularly. This down-regulation of surface idiotype rendered the tumor cells resistant to both ADCC and signaling-induced cell death. The addition of an immunostimulatory bacterial mimic (CpG-DNA; 100 μg × 5 intratumoral (i.t.) injections; Days 2, 3 4, 6 & 8) to antibody therapy (Day 0; 100 μg i.p.) cured large established tumors (Day 0 = 1 cm2) and prevented the occurrence of tumor escapees (p<0.0001). Antibody plus CpG combination therapy in tumor-bearing mice deficient for CD8+ T cells demonstrated the critical role of CD8+ T cells in A20 tumor eradication (p<0.005). Depletion of CD4+ T cells was found to have no significant impact on the therapy. We also found that when mice were inoculated with two tumors and treated with anti-idiotype antibody (i.p.) followed by intratumoral CpG in just one tumor (Day 0=1 cm2; anti-idiotype antibody 100 μg Day 0; 100 μg CpG Days 2, 3, 4, 6 & 8), untreated tumors regressed just as well as CpG-treated tumors indicating a systemic anti-tumor immune response was generated. Conclusion: Anti-idiotype therapy, although effective in delaying tumor growth, frequently generates antigen-loss variants. However, we found that when anti-idiotype antibodies were combined with CpG, even large established tumors were cured due to systemic CD8+ T cell-dependent tumor immunity. Rather than simply mediating ADCC against a single tumor antigen, which requires the constant infusion of antibody to hamper tumor growth, we hypothesize a cytotoxic T-cell response against many tumor antigens was also generated. Such a diverse T-cell repertoire can prevent the emergence of tumor escapees and collectively provide long-lasting tumor protection. These pre-clinical results suggest that anti-tumor antibodies combined with CpG warrant further study in patients with B cell lymphoma.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lihua Luo ◽  
Bing Qin ◽  
Mengshi Jiang ◽  
Lin Xie ◽  
Zhenyu Luo ◽  
...  

Abstract Background Photothermal therapy (PTT) is a highly effective treatment for solid tumors and can induce long-term immune memory worked like an in situ vaccine. Nevertheless, PTT inevitably encounters photothermal resistance of tumor cells, which hinders therapeutic effect or even leads to tumor recurrence. Naïve CD8+ T cells are mainly metabolized by oxidative phosphorylation (OXPHOS), followed by aerobic glycolysis after activation. And the differentiate of effector CD8+ T cell (CD8+ Teff) into central memory CD8+ T cell (CD8+ TCM) depends on fatty acid oxidation (FAO) to meet their metabolic requirements, which is regulated by adenosine monophosphate activated protein kinase (AMPK). In addition, the tumor microenvironment (TME) is severely immunosuppressive, conferring additional protection against the host immune response mediated by PTT. Methods Metformin (Met) down-regulates NADH/NADPH, promotes the FAO of CD8+ T cells by activating AMPK, increases the number of CD8+ TCM, which boosts the long-term immune memory of tumor-bearing mice treated with PTT. Here, a kind of PLGA microspheres co-encapsulated hollow gold nanoshells and Met (HAuNS-Met@MS) was constructed to inhibit the tumor progress. 2-Deoxyglucose (2DG), a glycolysis inhibitor for cancer starving therapy, can cause energy loss of tumor cells, reduce the heat stress response of tumor cell, and reverse its photothermal resistance. Moreover, 2DG prevents N-glycosylation of proteins that cause endoplasmic reticulum stress (ERS), further synergistically enhance PTT-induced tumor immunogenic cell death (ICD), and improve the effect of immunotherapy. So 2DG was also introduced and optimized here to solve the metabolic competition among tumor cells and immune cells in the TME. Results We utilized mild PTT effect of HAuNS to propose an in situ vaccine strategy based on the tumor itself. By targeting the metabolism of TME with different administration strategy of 2DG and perdurable action of Met, the thermotolerance of tumor cells was reversed, more CD8+ TCMs were produced and more effective anti-tumor was presented in this study. Conclusion The Step-by-Step starving-photothermal therapy could not only reverse the tumor thermotolerance, but also enhance the ICD and produce more CD8+ TCM during the treatment. Graphical Abstract


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3052-3052
Author(s):  
Yoshinobu Maeda ◽  
Robert B. Levy ◽  
Pavan Reddy ◽  
Chen Liu ◽  
Takanori Teshima ◽  
...  

Abstract We evaluated the role of Fas ligand and perforin, the major T cell-mediated cytotoxic pathways that regulate T cell homeostasis, in a CD8+ T cell mediated model of graft-versus-host disease (GVHD) where donor and recipients differ at a single MHC class I antigen (B6 → bm1). Lethally irradiated (11Gy) bm1 mice were transplanted with T cell depleted BM and CD8+ T cells from either wild type (wt) or cytotoxic double deficient (cdd, deficient in both pathways) B6 donors. We hypothesized that cdd CD8+ T cells would be unable to mediate significant GVHD. Contrary to our hypothesis, recipients of cdd donor CD8+ T cells demonstrated significantly greater histopathologic damage from GVHD and increased serum levels of IFN-gamma and TNF-alpha compared to controls (Table 1). In order to understand this increase, we evaluated the in vivo expansion of donor T cells in these recipients as well as in BMT recipients of allogeneic CD8+ T cells from FasL deficient (gld) and perforin deficient (pfp−/−) donors. CD8+ wt T cells expanded until at day 10 after BMT, followed by a rapid decline. By contrast, cdd CD8+ T cells expanded continuously up to day 30 after BMT, peaking at almost one hundred times the number of wt T cells. gld T cells showed kinetics similar to wt T cells, whereas the pfp−/− T cells showed a significantly greater peak on day 10 but a similar contraction by day 30. Percentages of annexin+ cdd donor CD8+ T cells were significantly reduced compared to the other groups. Persistence of host antigen presenting cells did not account for the unrestrained expansion of cdd donor T cells because host dendritic cells were not detected in either the spleen, BM or gut of recipients of cdd CD8+ T cells on day 6 after BMT. In addition, alloantigen expression on epithelial target cells did not enhance GVHD because B6 donor cdd T cells induced equivalently lethal GVHD in [bm1 → B6] and [bm1 → bm1] chimeras (MST of 30 days and 27 days, respectively). We conclude that both perforin and Fas ligand pathways are required for alloreactive CD8+ T cell populations to contract after their initial expansion during a GVH reaction and that the absence of both these pathways results in donor CD8+ T cell unrestricted expansion and more severe GVHD. Table 1 GVHD score (gut) IFN-g (pg/ml) TNF-a (pg/ml) CD8+T cell (x10e6) Annexin+CD8+(%) cdd vs. wt, *P<0.05 Wt 4.0±0.4 110±12 6.5±2.7 0.9±0.2 81±3.3 Cdd 5.7±0.3* 263±71* 64.6±3.2* 80.1±4.0* 62±3.6* Pfp−/− ND ND ND 2.6±0.7 73±5.1 Gld ND ND ND 1.7±0.4 80±0.6


2021 ◽  
Author(s):  
Lihua Luo ◽  
Bing Qin ◽  
Mengshi Jiang ◽  
Lin Xie ◽  
Zhenyu Luo ◽  
...  

Abstract Background: Photothermal therapy (PTT) is a highly effective treatment for solid tumorsand can induce long-term immune memory worked like an in situ vaccine. Nevertheless, PTT inevitably encounters photothermal resistance of tumor cells, which hinders therapeutic effect or even leads to tumor recurrence. Naïve CD8+T cells are mainly metabolized by oxidative phosphorylation (OXPHOS), followed by aerobic glycolysis after activation. And the differentiate of effector CD8+ T cell (CD8+Teff) into central memory CD8+ T cell (CD8+TCM) depends on fatty acid oxidation (FAO) to meet their metabolic requirements, which is regulated by adenosine monophosphate activated protein kinase (AMPK). In addition, the tumor microenvironment (TME) is severely immunosuppressive, confering additional protection against the host immune response mediated by PTT.Methods: Metformin (Met) down-regulates NADH/NADPH, promotes the FAO of CD8+T cells by activating AMPK, increases the number of CD8+TCM, which boosts the long-term immune memory of tumor-bearing mice treated with PTT. Here, a kind of PLGA microspheres co-encapsulated hollow gold nanoshells and Met (HAuNS-Met@MS) was constructed to inhibit the tumor progress. 2-Deoxyglucose (2DG), a glycolysis inhibitor for cancer starving therapy, can cause energy loss of tumor cells, reduce the heat stress response of tumor cell, and reverse its photothermal resistance. Moreover, 2DG prevents N-glycosylation of proteins that cause endoplasmic reticulum stress (ERS), further synergistically enhance PTT-induced tumor immunogenic cell death (ICD), and improve the effect of immunotherapy. So 2DG was also introduced and optimized here to solve the metabolic competition among tumor cells and immune cells in the TME.Results: We utilized mild PTT effect of HAuNS to propose an in situ vaccine strategy based on the tumor itself. By targeting the metabolism of TME with different administration strategy of 2DG and perdurable action of Met, the thermotolerance of tumor cells was reversed, more CD8+TCMs were produced and more effective anti-tumor was presented in this study.Conclusion: The Step-by-Step starving-photothermal therapy could not only reverse thetumor thermotolerance, but also enhance the ICD and produce more CD8+TCM during the treatment.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1260-1260
Author(s):  
Tania Kollgaard ◽  
Soren L. Petersen ◽  
Sine Reker Hadrup ◽  
Tania N. Masmas ◽  
Tina Seremet ◽  
...  

Abstract Allogeneic hematopoietic cell transplantation (HCT) has a well-documented ability to cure a number of malignant hematological diseases. The curative principle in allogeneic HCT is the Graft-versus-Leukemia (GVL) effect and nonmyeloablative (NMA) conditioning HCT relies exclusively on this anti-tumor effect to eliminate tumor cells. Donor T-cells are documented to be responsible for the GVL effect, however, often they also cause Graft-versus-Host disease (GVHD) which is associated with high morbidity and mortality. Characterization of cells and molecules involved in both GVL and GVHD would potentially set the stage for separation of GVL and GVHD in order to augment GVL in the absence of GVHD. In the present study, we analyzed the clonotype composition of CD8+ T cells following NMA conditioning and HCT, in two patients with chronic lymphocytic leukemia (CLL). T-cell receptor (TCR) clonotype mapping (RT-PCR combined with denaturing gradient gel electrophoresis (DGGE)) was used to identify clonally expanded CD8+ T cells in blood samples. This method provides a “molecular fingerprint” of each unique T cell based on junctional diversity of the TCR CDR3 region and, thus, offers the means to track T-cell clonotypes in time and space. Longitudinal comparative analyses showed that CD8+ T-cell clonality was highly dynamic during early phases after transplantation with various clonotypes emerging and disappearing. However, clonal diversity decreased after 4–5 months and stable CD8+ T-cell clonotypes appeared and persisted throughout the analyzed period (up to two years). One patient received donor lymphocyte infusion (DLI) due to disease progression and this was shown to lead to establishment of recurrent (detected prior to DLI) CD8+ T-cell clonotypes as well as new CD8+ T-cell clonotypes. The appearance of these cells correlated with disease remission strongly suggesting their engagement in anti-CLL reactivity. To examine the functional capacities of clonally expanded T cells after HCT, recipient CD8+ T cells were stimulated ex vivo with pre-transplant patient CLL cells and/or normal hematopoietic cells and the T-cell surface expression of CD107a (marker for cytotoxicity) was detected by FACS. Clonotype mapping analyses of FACS sorted CD107a positive CD8+ T cells after stimulation with CLL cells demonstrated that such cytotoxic CD8+ T cells were present as stable clonally expanded T cells in vivo strongly implying their involvement in an ongoing anti-CLL-response. Furthermore, co-culture with normal hematopoietic cells resulted in a unique CD107a positive expanded T-cell clonotype. Our results strongly suggest that clonally expanded CD8+ T cells are involved in an ongoing tumor response and support data which demonstrate that GVL and GVHD are the result of distinct responses.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2170-2170
Author(s):  
Ronjon Chakraverty ◽  
Barry Flutter ◽  
Hyeon-Seok Eom ◽  
Farnaz Fallah-Arani ◽  
Guiling Zhao ◽  
...  

Abstract Extrinsic factors within the host environment are crucial in determining recruitment of graft-versus-host (GVH)-reactive T cells to peripheral tissues and the capacity of these cells to induce graft-versus-host disease (GVHD). In this study, we have examined how the host environment influences graft-versus-leukemia (GVL) activity. Transfer of small numbers of allogeneic T cells to freshly irradiated (TBI allo) mice induces both GVL and GVHD, whereas transfer of much higher numbers of T cells to established (>8 weeks) mixed chimeras (MC) can induce GVL without GVHD. Using an EL4 tumor protection assay and low doses of B10.A splenocytes (3 × 10e6, a dose 1 log lower than normally transferred to MC to induce GVL), we observed that tumor-free survival of recipient mice was greater following transfer to TBI allo B6 recipients than in B6 + B10.A → B6 MC. To determine the mechanisms for this disparity, we used a BALB/c recipient/B6 donor strain combination, in which we could track the distribution of donor T cells within secondary lymphoid organs and bone marrow (BM) following transfer to TBI allo or MC recipients. Despite similar expansions within the spleen, there was a significant delay in the accumulation of polyclonal donor T cells (B6 CD45.1) and transgenic 2C GVH-reactive CD8+ T-cells (bearing TCR specific for recipient antigen) in the BM of MC compared to TBI allo mice. Moreover, in vivo cytotoxicity of host B cell targets occurred rapidly and was virtually complete in TBI allo recipients, but was absent in MC even at late time points. To evaluate the acquisition of effector functions in a clonal GVH-reactive CD8+ T cell population, we sorted 2C T cells at intervals following transfer and performed quantitative RT-PCR of molecules linked to effector differentiation. Strikingly, transcription of IFN-γ, granzyme B and TNF-α was significantly higher in cells derived from TBI allo hosts compared to MC. Similar differences in IFN-γ and granzyme B protein expression were confirmed in the polyclonal donor CD8+ T cell population. Since, full GVL activity might also depend upon the survival of GVH-reactive CTL, we also examined the viability of donor T cells during the initial response in both environments. We observed higher rates of sustained 2C CD8+ T cell apoptosis (as indicated by annexin V staining) following T cell transfer to MC. Furthermore, we also detected lower expression of common γ chain cytokine receptors that mediate responsiveness to IL-2, IL-7 and IL-15, upon donor T cells from MC. However, following secondary co-transfer to syngeneic recipients for 21 days, memory phenotype polyclonal donor CD8+ T cells derived from established MC (CD45.1+) were recovered to a greater extent than T cells initially derived from TBI allo mice (Thy1.1+), arguing against any intrinsic defect in the viability of GVH-reactive T cell populations emerging in the former setting. Indeed, when co-cultured in the presence of individual cytokines, MC-derived CD8+ T cells maintained viability to a greater (IL-2, IL-7) or equivalent (IL-15) extent as TBI allo-derived cells. Taken together, these data suggest that disparity in GVL activity following to TBI allo recipients and MC can be explained by differences in the effector function and survival of anti-host CTL in quiescent MC environment. Reduced GVL activity of donor T cells on a per-cell basis in MC can be compensated for by transferring greater numbers of cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3001-3001
Author(s):  
Jian-Ming Li ◽  
Hyun Don Yun ◽  
Edmund K. Waller

Abstract Abstract 3001 Background and Objective: Vasoactive intestinal peptide (VIP) has potent immune-suppressive activity and can generate tolerogenic dendritic cells (DC) in vitro that block graft versus host disease (GvHD) in mouse model of BMT. We have previously published that absence of VIP signaling dramatically decreases PD-1 expression on activated CD8 T-cells and increases cellular antiviral immunity (JI 2011, 187:1057). To determine whether blockade of VIP-signaling enhances the graft-versus-leukemia (GvL) activity of donor T-cells in an allogeneic BMT model, we treated tumor bearing B6B̂10BR allogeneic transplant recipients with a short course of daily s.c. injections of a small molecule VIP antagonist - VIPhyb or used VIP-knockout (VIP-KO) mice as BM donors. Methods: Recipient mice were inoculated with luciferase+ murine acute T-cell lymphoma cells (Luc+ LBRM) by i.v. injection one day after lethal total body irradiation, then transplanted with the combination of 5 × 106 T cell-depleted BM (TCD-BM) plus splenocytes from either VIP-KO mice or wild-type (WT) littermates two days after irradiation. One group transplanted with WT BM and splenocytes received daily injections of 10 μg VIPhyb for one week; another group received saline injections. Survival, GvHD clinical sores (body weight, activity, posture, fur texture and skin), and bioluminescence imaging (BLI) were collected daily, twice a week, and weekly, respectively. Results: Transplantation of low dose (0.5 × 106) splenocytes from VIP-KO donors or low dose WT splenocytes in conjunction with VIPhyb-treatment dramatically improved tumor-free survival in the B6B̂10BR allogeneic BMT model compared with PBS-treated recipients of WT grafts (Figure 1). The best overall survival (70%) and lowest number of mice with detectable tumor (10%) were seen in the VIPhyb-treated group. VIPhyb-treated mice did not have increased GvHD as assessed by clinical scoring. Recipients of VIP-KO grafts had 40% survival with no detectable tumors by BLI, and were without significant GvHD by clinical scoring. In contrast, the recipients transplanted with TCD-BM alone (without added splenocytes) and recipients that received 0.5 × 106 splenocytes and TCD-BM from WT donors and treated with PBS had increased tumor growth detected by BLI following BMT, and all of the mice died by 2 months post-BMT. Moreover, in non-tumor bearing mice transplanted with an intermediate dose (1 × 106) of splenocytes, survival was not different among recipients engrafted with VIP-KO BM and T-cells (84 ± 6 %), WT BM and T-cells treated with VIPhyb (89 ± 8 %) and WT BM and T-cells treated with PBS (94 ± 5 %). A similar enhancement of the GvL effect and a corresponding survival advantage for VIP-signaling blockade was seen in tumor-bearing transplant recipients of TCD-BM plus 1 × 106 splenocytes, with significantly better survival among recipients of VIP-KO donor cells (50%), recipients of WT cells treated with VIPhyb (60%) compared with recipients of WT cells treated with PBS (20%; p=0.04). Furthermore, in non-tumor bearing mice that received a higher dose (3 × 106) of splenocytes, recipients of VIP-KO BM and recipients of WT BM treated with VIPhyb had no significant increase in GvHD compared with recipients of WT BM treated with PBS (66 ± 9 %, 71 ± 8 % and 71 ± 8 % survival at 80 days, respectively). The mechanism by which administration of a VIP antagonist enhanced anti-tumor immunity includes the effect of blocking VIP-signaling induction of cAMP, leading to fewer Treg and fewer tolerogenic DC. Of note, blocking VIP-signaling led to significant decreases in expression of PD-1 and PD-L1 on CD8+ T-cells and DCs, respectively. Conclusion: Treatment with a small molecule antagonist of VIP-signaling, VIPhyb, dramatically increased anti-leukemic activity of donor T-cells without significantly increased GvHD. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (5) ◽  
pp. 1723-1733 ◽  
Author(s):  
Fang Zhao ◽  
Yi Zhang ◽  
Hao Wang ◽  
Min Jin ◽  
Shan He ◽  
...  

Abstract Graft-versus-host disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem cell transplantation, is caused by alloreactive donor T cells that trigger host tissue damage. The inflammatory environment inside recipients is critical for GVHD pathogenesis, but the underpinning mechanisms remain elusive. Using mouse model of human GVHD, we demonstrate osteopontin (OPN), a potent proinflammatory cytokine, plays an important role in regulating activation, migration, and survival of alloreactive T cells during GVHD. OPN was significantly elevated after irradiation and persisted throughout the course of GVHD. Blockade of OPN attenuated GVHD with reduced accumulation of donor T cells in recipient organs. Amelioration was the result of migration and survival suppression caused by anti-OPN treatment on donor-derived T cells for 2 reasons. First, OPN promoted the migration and infiltration of naive and alloreactive CD8+ T cells into host organs. Second, it also facilitated activation and viability of donor-derived CD8+ T cells via synergizing with T-cell receptor/CD3 signaling. Finally, anti-OPN treatment retained graft-versus-leukemia effect of alloreactive CD8+ T cells. This study demonstrates, to our knowledge for the first time, the critical effect of OPN in the initiation and persistence of CD8+ T cell-mediated GVHD and validates OPN as a potential target in GVHD prevention.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 10038-10038
Author(s):  
Maarten Slagter ◽  
Elisa A. Rozeman ◽  
Huiwen Ding ◽  
Judith M. Versluis ◽  
Mesele Valenti ◽  
...  

10038 Background: Only a subset of advanced melanoma patients respond to anti-PD-1 (aPD1) monotherapy. Upfront identification of (non-)responsiveness would help guide first-line treatment decisions, prevent overtreatment and unnecessary risk for toxicities. T cell density and expression of T cell related genes have been associated with response to aPD1, but are imperfect predictors. We investigated whether spatial proximity of CD8 T cells to tumor cells improves upon the predictive value of T cell density alone. Methods: Pretreatment tumor specimens from melanoma patients treated with aPD1 in the Netherlands Cancer Institute were stained for DAPI, SOX10/Melan-A, CD4, CD8, FOXP3 and PD-1 by multiplex immunofluorescence. Sections were imaged on Vectra and analyzed using HALO to optimize marker thresholds and demarcate tumor and stroma. T cell proximity to tumor cells was evaluated as difference in area under the curve between i) a spatial G-function quantifying T cell density around tumor cells in tumor areas and ii) analogous null distributions obtained by random permutation of cell labels. This assessment of co-clustering is independent of cell density and heterogeneity therein and does not reflect repulsion of T cells to stromal/marginal areas. Clinical characteristics, RECIST response and survival were collected from patient records. Associations between T cell density, T cell proximity to Sox10/Melan-A+ tumor cells, other clinical biomarkers (LDH, M stage and WHO performance status) and response were examined in a Bayesian hierarchical logistic regression. Results: Tumor specimens of 98 patients were included, of whom 45 were treated with aPD1 as first-line therapy and 33 had an objective response. CD8 T cell proximity to tumor cells was associated with response in an independent, comparatively strong, and tissue dependent manner (cutaneous tissue: 2.78 [2.45, 3.17], visceral: 2.30 [1.95, 2.72], lymphoid: 2.12 [1.88, 2.40], format: maximal posteriori odds ratio [89% equal-tailed credibility interval]), in a multivariate model correcting for CD8 T cell density (1.74 [1.62, 1.88]), LDH (1.93 [1.72, 2.16]), M stage (0.92 [0.87, 0.98]) and WHO performance status (0.79 [0.72, 0.88]). Our model achieved an area under the ROC curve of 77.7%, whereas an analogous model omitting the proximity variable achieved 73.1%. Conclusions: Our analyses show that spatial proximity of CD8 T cells to tumor cells functions as an independent biomarker for response to aPD1 and suggests that preexisting CD8 T cell tumor reactivity is reflected by this spatial proximity.


2020 ◽  
Vol 4 (17) ◽  
pp. 4165-4174
Author(s):  
Prashant Hiwarkar ◽  
Stuart Adams ◽  
Kimberly Gilmour ◽  
Ramya Nataraj ◽  
Denise Bonney ◽  
...  

Abstract The action of hematopoietic cell transplantation in controlling leukemia is principally mediated by donor T cells directed against residual recipient malignant cells. However, its utility is limited by graft-versus-host disease (GVHD), where alloreactivity is extended beyond leukemic and marrow cells. In a human/murine chimeric model, we previously showed that the preferential infiltration of cord blood (CB) CD8+ T cells eradicates an Epstein-Barr virus–driven lymphoblastoid tumor without causing xenogeneic GVHD. In the clinic, however, cord blood CD8+ T-cell reconstitution is significantly delayed, and the observation of such a robust antileukemia effect mediated by cord blood CD8+ T cells has not been reported. We describe an observation of very early T-cell expansion in 4 high-risk pediatric leukemia patients receiving third-party, pooled granulocytes after T cell–replete CB transplantation (CBT). The T-cell expansion was transient but robust, including expansion of CD8+ T cells, in contrast to the delayed CD8+ T-cell expansion ordinarily observed after T cell–replete CBT. The CD8+ T cells were polyclonal, rapidly switched to memory phenotype, and had the ability to mediate cytotoxicity. This phenomenon is reproducible, and each patient remains in long-term remission without GVHD. The results suggest that fetal-derived CB CD8+ T cells can be exploited to generate robust antileukemia effects without GVHD.


Sign in / Sign up

Export Citation Format

Share Document