scholarly journals Increase in chemokine CXCL1 by ERβ ligand treatment is a key mediator in promoting axon myelination

2018 ◽  
Vol 115 (24) ◽  
pp. 6291-6296 ◽  
Author(s):  
Hawra Karim ◽  
Sung Hoon Kim ◽  
Andrew S. Lapato ◽  
Norio Yasui ◽  
John A. Katzenellenbogen ◽  
...  

Estrogen receptor β (ERβ) ligands promote remyelination in mouse models of multiple sclerosis. Recent work using experimental autoimmune encephalomyelitis (EAE) has shown that ERβ ligands induce axon remyelination, but impact peripheral inflammation to varying degrees. To identify if ERβ ligands initiate a common immune mechanism in remyelination, central and peripheral immunity and pathology in mice given ERβ ligands at peak EAE were assessed. All ERβ ligands induced differential expression of cytokines and chemokines, but increased levels of CXCL1 in the periphery and in astrocytes. Oligodendrocyte CXCR2 binds CXCL1 and has been implicated in normal myelination. In addition, despite extensive immune cell accumulation in the CNS, all ERβ ligands promoted extensive remyelination in mice at peak EAE. This finding highlights a component of the mechanism by which ERβ ligands mediate remyelination. Hence, interplay between the immune system and central nervous system may be responsible for the remyelinating effects of ERβ ligands. Our findings of potential neuroprotective benefits arising from the presence of CXCL1 could have implications for improved therapies for multiple sclerosis.

2021 ◽  
Author(s):  
William E. Barclay ◽  
M. Elizabeth Deerhake ◽  
Makoto Inoue ◽  
Toshiaki Nonaka ◽  
Kengo Nozaki ◽  
...  

ABSTRACTInflammasomes are a class of innate immune signaling platforms that activate in response to an array of cellular damage and pathogens. Inflammasomes promote inflammation under many circumstances to enhance immunity against pathogens and inflammatory responses through their effector cytokines, IL-1β and IL-18. Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are such autoimmune conditions influenced by inflammasomes. Despite work investigating inflammasomes during EAE, little remains known concerning the role of inflammasomes in the central nervous system (CNS) during the disease. Here we use multiple genetically modified mouse models to monitor activated inflammasomes in situ based on ASC oligomerization in the spinal cord. Using inflammasome reporter mice, we found heightened inflammasome activation in astrocytes after the disease peak. In contrast, microglia and CNS-infiltrated myeloid cells had few activated inflammasomes in the CNS during EAE. Astrocyte inflammasome activation was dependent on AIM2, but low IL-1β expression and no significant signs of cell death were found in astrocytes during EAE. Thus, the AIM2 inflammasome activation in astrocytes may have a distinct role from traditional inflammasome-mediated inflammation.SIGNIFICANCE STATEMENTInflammasome activation in the peripheral immune system is pathogenic in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). However, inflammasome activity in the central nervous system (CNS) is largely unexplored. Here, we used genetically modified mice to determine inflammasome activation in the CNS during EAE. Our data indicated heightened AIM2 inflammasome activation in astrocytes after the disease peak. Unexpectedly, neither CNS-infiltrated myeloid cells nor microglia were the primary cells with activated inflammasomes in SC during EAE. Despite AIM2 inflammasome activation, astrocytes did not undergo apparent cell death and produced little of the proinflammatory cytokine, IL-1β, during EAE. This study showed that CNS inflammasome activation occurs during EAE without associating with IL-1β-mediated inflammation.


2019 ◽  
Vol 28 (9-10) ◽  
pp. 1155-1160 ◽  
Author(s):  
J. Xu ◽  
Y. Wang ◽  
H. Jiang ◽  
M. Sun ◽  
J. Gao ◽  
...  

Multiple sclerosis is a disease characterized by inflammation and demyelination located in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is the most common animal model for multiple sclerosis (MS). Although the roles of T cells in MS/EAE have been well investigated, little is known about the functions of other immune cells in the neuroinflammation model. Here we found that an essential cytokine transforming growth factor β (TGF-β) which could mediate the differentiation of Th17/regulatory T cells was implicated in the natural killer (NK) cells’ activity in EAE. In EAE mice, TGF-β expression was first increased at the onset and then decreased at the peak, but the expressions of TGF-β receptors and downstream molecules were not affected in EAE. When we immunized the mice with MOG antigen, it was revealed that TGF-β treatment reduced susceptibility to EAE with a lower clinical score than the control mice without TGF-β. Consistently, inflammatory cytokine production was reduced in the TGF-β treated group, especially with downregulated pathogenic interleukin-17 in the central nervous system tissue. Furthermore, TGF-β could increase the transcription level of NK cell marker NCR1 both in the spleen and in the CNS without changing other T cell markers. Meanwhile TGF-β promoted the proliferation of NK cell proliferation. Taken together, our data demonstrated that TGF-β could confer protection against EAE model in mice through NK cells, which would be useful for the clinical therapy of MS.


2021 ◽  
Author(s):  
Jessica Louise Fletcher ◽  
Rhiannon J Wood ◽  
Alexa R Prawdiuk ◽  
Ryan O'Rafferty ◽  
Ophelia Ehrlich ◽  
...  

Small molecular weight functional mimetics of brain-derived neurotrophic factor (BDNF) which act via the TrkB receptor have been developed to overcome the pharmacokinetic limitations of BDNF as a therapeutic agent for neurological disease. Activation of TrkB signalling on oligodendrocytes has been identified as a potential strategy for promoting myelin repair in demyelinating conditions such as Multiple Sclerosis (MS). Here, we tested the efficacy of intracerebroventricular infusion of TrkB agonist 7,8-dihydroxyflavone (DHF) to promote myelin repair in the cuprizone model of de- and remyelination and alter the course of experimental autoimmune encephalomyelitis (EAE), after the onset of clinical signs. In these two distinct, but common mouse models used for the preclinical testing of MS therapeutics, we found that DHF infusion increased the percentage of myelin basic protein and density of oligodendrocyte progenitor cells (OPCs) in the corpus callosum of female C57BL/6 mice after cuprizone demyelination. However, DHF did not alter the percentage of axons myelinated or increase the density of post-mitotic oligodendrocytes in this model. Direct central nervous system infusion of DHF infusion also had no effect on the clinical course of EAE in male and female C57BL/6 mice, and examination of the lumbar spinal cord after 21 days of treatment revealed extensive demyelination, with active phagocytosis of myelin debris by Iba1+ macrophages/microglia. These results indicate that direct central nervous system infusion of DHF is ineffective at promoting myelin repair in toxin-induced and inflammatory models of demyelination.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yasunobu Arima ◽  
Daisuke Kamimura ◽  
Lavannya Sabharwal ◽  
Moe Yamada ◽  
Hidenori Bando ◽  
...  

The central nervous system (CNS) is an immune-privileged environment protected by the blood-brain barrier (BBB), which consists of specific endothelial cells that are brought together by tight junctions and tight liner sheets formed by pericytes and astrocytic end-feet. Despite the BBB, various immune and tumor cells can infiltrate the CNS parenchyma, as seen in several autoimmune diseases like multiple sclerosis (MS), cancer metastasis, and virus infections. Aside from a mechanical disruption of the BBB like trauma, how and where these cells enter and accumulate in the CNS from the blood is a matter of debate. Recently, using experimental autoimmune encephalomyelitis (EAE), an animal model of MS, we found a “gateway” at the fifth lumber cord where pathogenic autoreactive CD4+ T cells can cross the BBB. Interestingly, this gateway is regulated by regional neural stimulations that can be mechanistically explained by the gate theory. In this review, we also discuss this theory and its potential for treating human diseases.


Sign in / Sign up

Export Citation Format

Share Document