scholarly journals Cochaperone Mzb1 is a key effector of Blimp1 in plasma cell differentiation and β1-integrin function

2018 ◽  
Vol 115 (41) ◽  
pp. E9630-E9639 ◽  
Author(s):  
Virginia Andreani ◽  
Senthilkumar Ramamoorthy ◽  
Abhinav Pandey ◽  
Ekaterina Lupar ◽  
Stephen L. Nutt ◽  
...  

Plasma cell differentiation involves coordinated changes in gene expression and functional properties of B cells. Here, we study the role of Mzb1, a Grp94 cochaperone that is expressed in marginal zone (MZ) B cells and during the terminal differentiation of B cells to antibody-secreting cells. By analyzing Mzb1−/−Prdm1+/gfp mice, we find that Mzb1 is specifically required for the differentiation and function of antibody-secreting cells in a T cell-independent immune response. We find that Mzb1-deficiency mimics, in part, the phenotype of Blimp1 deficiency, including the impaired secretion of IgM and the deregulation of Blimp1 target genes. In addition, we find that Mzb1−/− plasmablasts show a reduced activation of β1-integrin, which contributes to the impaired plasmablast differentiation and migration of antibody-secreting cells to the bone marrow. Thus, Mzb1 function is required for multiple aspects of plasma cell differentiation.

2021 ◽  
Author(s):  
Etienne Masle-Farquhar ◽  
Timothy J. Peters ◽  
Lisa A. Miosge ◽  
Ian A Parish ◽  
Christoph Weigel ◽  
...  

CD21low age-associated or atypical memory B cells, enriched for autoantibodies and poised for plasma cell differentiation, accumulate in large numbers in chronic infections, autoimmune disease and immunodeficiency, posing the question of what checkpoints normally oppose their excessive accumulation. Here, we reveal a critical role for the calcium-NFAT-regulated transcription factors EGR2 and EGR3. In the absence of EGR2 and EGR3 within B cells, CD21low and B1 B cells accumulate and circulate in young mice in numbers 10-20 times greater than normal, over-express a large set of EGR2 ChIP-seq target genes including known drivers of plasma cell differentiation and under-express drivers of follicular germinal centers. Most follicular B cells constitutively express Egr2 proportionally to surface IgM down-regulation by self-antigens, and EGR2/3 deficiency abolishes this characteristic anergy response. These results define a key transcriptional checkpoint repressing CD21low B cell formation and inform how NFATC1 or EGR2 mutations promote B1 cell-derived chronic lymphocytic leukemias.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 148-148
Author(s):  
Jonathan Mandelbaum ◽  
Qiong Shen ◽  
Hongyan Tang ◽  
Tongwei Mo ◽  
Barbara Malynn ◽  
...  

Abstract Abstract 148 Diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin lymphoma, is a heterogeneous disease comprising multiple biologically and clinically distinct subgroups, including germinal center B cell-like (GCB) and activated B cell-like (ABC) DLBCL. Numerous genetic alterations segregate with ABC-DLBCL, namely translocations of the BCL6 proto-oncogene, BLIMP1 inactivation and constitutive NF-κB activation. We recently reported that A20, a negative regulator of NF-κB signaling, is biallelically inactivated by mutations and deletions in one-third of ABC-DLBCL (Compagno et al, Nature, 2009), indicating a tumor suppressor role in this disease. Notably, A20 inactivation is commonly associated with chromosomal translocations deregulating BCL6 (n=11/20 DLBCL cases). Furthermore, the two genes are linked in the same pathway, where NF-κB induced activation of IRF4 leads to BCL6 down-regulation (Saito et al. Cancer Cell 2007) and consequent release of the BCL6 target BLIMP1, a master regulator of plasma cell differentiation. These observations suggest that A20 inactivation and BCL6 translocations cooperate in DLBCL pathogenesis. In order to examine the individual and combined contribution of these two lesions in vivo, we have generated an A20 conditional knockout allele in which a loxP-flanked exon 3 of the A20 gene can be deleted upon Cre-mediated recombination. The resulting mice were crossed with both a Cγ1-Cre deletor strain, which expresses the Cre recombinase in germinal centre (GC) B cells, and the lymphoma-prone Iμ HABCL6 mouse model (Cattoretti et al., Cancer Cell, 2005), which mimics a BCL6 translocation to the immunoglobulin heavy chain locus. When analyzed at 3 months of age, GC B-cell conditional heterozygous (A20Cγ1HET) and homozygous (A20Cγ1KO) A20 knockout mice showed a significant increase in the B220dimCD138+ plasma cell population (0.6% and 0.5%, respectively, versus 0.3% for wild-type littermates) and a corresponding 2-fold increase in IgG1 serum immunoglobulin levels after immunization with sheep red blood cells. Furthermore, A20 knockout splenic B cells had increased proliferative capacity and survival after stimulation ex vivo with lipopolysaccharides, B-cell receptor cross-linking or CD40 activation, consistent with enhanced NF-κB activity in these cells. Interestingly, the increase in plasma cells was not observed in compound Iμ HABCL6/ A20Cγ1HET and Iμ HABCL6/ A20Cγ1KO animals, presumably due to the known role of BCL6 in blocking plasma cell differentiation (Tunyaplin et al., J. of Immunol., 2004). In contrast, these animals displayed a marked increase in the B220+PNAhi GC B cell compartment, as compared to both A20 knockout and Iμ HABCL6 mice (2.5% and 3.9% respectively, versus 1.9% for wild-type littermates). Overall, these findings document that A20 acts as a negative regulator of B cell proliferation and survival as well as of plasma cell differentiation in vivo, and support a model by which loss of A20 synergizes with BCL6 deregulation to promote the expansion of GC B cells while preventing terminal differentiation. Long-term follow-up of these cohorts will provide critical information on the role of A20 as a tumor suppressor gene in vivo and on its cooperative activity with BCL6 deregulation in the pathogenesis of DLBCL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1804-1812 ◽  
Author(s):  
Heike Schmidlin ◽  
Sean A. Diehl ◽  
Maho Nagasawa ◽  
Ferenc A. Scheeren ◽  
Remko Schotte ◽  
...  

Abstract The terminal differentiation of B cells into antibody-secreting plasma cells is tightly regulated by a complex network of transcription factors. Here we evaluated the role of the Ets factor Spi-B during terminal differentiation of human B cells. All mature tonsil and peripheral blood B-cell subsets expressed Spi-B, with the exception of plasma cells. Overexpression of Spi-B in CD19+ B cells inhibited, similar to the known inhibitor BCL-6, the expression of plasma cell–associated surface markers and transcription factors as well as immunoglobulin production, ie, in vitro plasma cell differentiation. The arrest in B-cell differentiation enforced by Spi-B was independent of the transactivation domain, but dependent on the Ets-domain. By chromatin immunoprecipitation and assays using an inducible Spi-B construct BLIMP1 and XBP-1 were identified as direct target genes of Spi-B mediated repression. We propose a novel role for Spi-B in maintenance of germinal center and memory B cells by direct repression of major plasma cell factors and thereby plasma cell differentiation.


Blood ◽  
2010 ◽  
Vol 116 (11) ◽  
pp. 1895-1898 ◽  
Author(s):  
Christelle Vincent-Fabert ◽  
Remi Fiancette ◽  
Eric Pinaud ◽  
Véronique Truffinet ◽  
Nadine Cogné ◽  
...  

Abstract The immunoglobulin heavy chain locus (IgH) undergoes multiple changes along B-cell differentiation. In progenitor B cells, V(D)J assembly allows expression of μ heavy chains. In mature B cells, class switch recombination may replace the expressed constant (C)μ gene with a downstream CH gene. Finally, plasma cell differentiation strongly boosts IgH transcription. How the multiple IgH transcriptional enhancers tune these changes is unclear. Here we demonstrate that deletion of the whole IgH 3′ regulatory region (3′RR) allows normal maturation until the stage of IgM/IgD expressing lymphocytes, but nearly abrogates class switch recombination to all CH genes. Although plasma cell numbers are unaffected, we reveal the role of the 3′RR into the transcriptional burst normally associated with plasma cell differentiation. Our study shows that transcriptional changes and recombinations occurring after antigen-encounter appear mainly controlled by the 3′RR working as a single functional unit.


Blood ◽  
2011 ◽  
Vol 117 (22) ◽  
pp. 5907-5917 ◽  
Author(s):  
Katerina Vrzalikova ◽  
Martina Vockerodt ◽  
Sarah Leonard ◽  
Andrew Bell ◽  
Wenbin Wei ◽  
...  

AbstractAn important pathogenic event in Epstein-Barr virus (EBV)-associated lymphomas is the suppression of virus replication, which would otherwise lead to cell death. Because virus replication in B cells is intimately linked to their differentiation toward plasma cells, we asked whether the physiologic signals that drive normal B-cell differentiation are absent in EBV-transformed cells. We focused on BLIMP1α, a transcription factor that is required for plasma cell differentiation and that is inactivated in diffuse large B-cell lymphomas. We show that BLIMP1α expression is down-regulated after EBV infection of primary germinal center B cells and that the EBV oncogene, latent membrane protein-1 (LMP-1), is alone capable of inducing this down-regulation in these cells. Furthermore, the down-regulation of BLIMP1α by LMP-1 was accompanied by a partial disruption of the BLIMP1α transcriptional program, including the aberrant induction of MYC, the repression of which is required for terminal differentiation. Finally, we show that the ectopic expression of BLIMP1α in EBV-transformed cells can induce the viral lytic cycle. Our results suggest that LMP-1 expression in progenitor germinal center B cells could contribute to the pathogenesis of EBV-associated lymphomas by down-regulating BLIMP1α, in turn preventing plasma cell differentiation and induction of the viral lytic cycle.


2018 ◽  
Vol 9 ◽  
Author(s):  
Bárbara José Antunes Baptista ◽  
Alessandra Granato ◽  
Fábio B. Canto ◽  
Fabricio Montalvão ◽  
Lucas Tostes ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Swadhinya Arjunaraja ◽  
Brent D. Nosé ◽  
Gauthaman Sukumar ◽  
Nathaniel M. Lott ◽  
Clifton L. Dalgard ◽  
...  

2012 ◽  
Vol 90 (8) ◽  
pp. 802-811 ◽  
Author(s):  
Sean A Diehl ◽  
Heike Schmidlin ◽  
Maho Nagasawa ◽  
Bianca Blom ◽  
Hergen Spits

Sign in / Sign up

Export Citation Format

Share Document