scholarly journals PPARγ-K107 SUMOylation regulates insulin sensitivity but not adiposity in mice

2018 ◽  
Vol 115 (48) ◽  
pp. 12102-12111 ◽  
Author(s):  
Takeshi Katafuchi ◽  
William L. Holland ◽  
Rahul K. Kollipara ◽  
Ralf Kittler ◽  
David J. Mangelsdorf ◽  
...  

The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation and is the target for the insulin-sensitizing thiazolidinedione (TZD) drugs used to treat type 2 diabetes. In cell-based in vitro studies, the transcriptional activity of PPARγ is inhibited by covalent attachment of small ubiquitin-related modifier (SUMOylation) at K107 in its N terminus. However, whether this posttranslational modification is relevant in vivo remains unclear. Here, using mice homozygous for a mutation (K107R) that prevents SUMOylation at this position, we demonstrate that PPARγ is SUMOylated at K107 in white adipose tissue. We further show that in the context of diet-induced obesity PPARγ-K107R–mutant mice have enhanced insulin sensitivity without the corresponding increase in adiposity that typically accompanies PPARγ activation by TZDs. Accordingly, the PPARγ-K107R mutation was weaker than TZD treatment in stimulating adipocyte differentiation in vitro. Moreover, we found that both the basal and TZD-dependent transcriptomes of inguinal and epididymal white adipose tissue depots were markedly altered in the K107R-mutant mice. We conclude that PPARγ SUMOylation at K107 is physiologically relevant and may serve as a pharmacologic target for uncoupling PPARγ’s beneficial insulin-sensitizing effect from its adverse effect of weight gain.

2016 ◽  
Vol 310 (1) ◽  
pp. R55-R65 ◽  
Author(s):  
Yun-Hee Lee ◽  
Sang-Nam Kim ◽  
Hyun-Jung Kwon ◽  
Krishna Rao Maddipati ◽  
James G. Granneman

De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44− macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis.


Endocrinology ◽  
2012 ◽  
Vol 153 (4) ◽  
pp. 1706-1716 ◽  
Author(s):  
Fen Xu ◽  
David Burk ◽  
Zhanguo Gao ◽  
Jun Yin ◽  
Xia Zhang ◽  
...  

The histone deacetylase sirtuin 1 (SIRT1) inhibits adipocyte differentiation and suppresses inflammation by targeting the transcription factors peroxisome proliferator-activated receptor γ and nuclear factor κB. Although this suggests that adiposity and inflammation should be enhanced when SIRT1 activity is inactivated in the body, this hypothesis has not been tested in SIRT1 null (SIRT1−/−) mice. In this study, we addressed this issue by investigating the adipose tissue in SIRT1−/− mice. Compared with their wild-type littermates, SIRT1 null mice exhibited a significant reduction in body weight. In adipose tissue, the average size of adipocytes was smaller, the content of extracellular matrix was lower, adiponectin and leptin were expressed at 60% of normal level, and adipocyte differentiation was reduced. All of these changes were observed with a 50% reduction in capillary density that was determined using a three-dimensional imaging technique. Except for vascular endothelial growth factor, the expression of several angiogenic factors (Pdgf, Hgf, endothelin, apelin, and Tgf-β) was reduced by about 50%. Macrophage infiltration and inflammatory cytokine expression were 70% less in the adipose tissue of null mice and macrophage differentiation was significantly inhibited in SIRT1−/− mouse embryonic fibroblasts in vitro. In wild-type mice, macrophage deletion led to a reduction in vascular density. These data suggest that SIRT1 controls adipose tissue function through regulation of angiogenesis, whose deficiency is associated with macrophage malfunction in SIRT1−/− mice. The study supports the concept that inflammation regulates angiogenesis in the adipose tissue.


2012 ◽  
Vol 32 (6) ◽  
pp. 619-629 ◽  
Author(s):  
Chanjuan Hao ◽  
Xuejia Cheng ◽  
Hongfei Xia ◽  
Xu Ma

The environmental obesogen hypothesis proposes that exposure to endocrine disruptors during developmental ‘window’ contributes to adipogenesis and the development of obesity. MEHP [mono-(2-ethylhexyl) phthalate], a metabolite of the widespread plasticizer DEHP [di-(2-ethylhexyl) phthalate], has been found in exposed organisms and identified as a selective PPARγ (peroxisome-proliferator-activated receptor γ) modulator. However, implication of MEHP on adipose tissue development has been poorly investigated. In the present study, we show the dose-dependent effects of MEHP on adipocyte differentiation and GPDH (glycerol-3-phosphate dehydrogenase) activity in the murine 3T3-L1 cell model. MEHP induced the expression of PPARγ as well as its target genes required for adipogenesis in vitro. Moreover, MEHP perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to a low dose of MEHP significantly increased b.w. (body weight) and fat pad weight in male offspring at PND (postnatal day) 60. In addition, serum cholesterol, TAG (triacylglycerol) and glucose levels were also significantly elevated. These results suggest that perinatal exposure to MEHP may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders.


2016 ◽  
Vol 36 (7) ◽  
pp. 1180-1193 ◽  
Author(s):  
Nathan L. Price ◽  
Brandon Holtrup ◽  
Stephanie L. Kwei ◽  
Martin Wabitsch ◽  
Matthew Rodeheffer ◽  
...  

White adipose tissue (WAT) is essential for maintaining metabolic function, especially during obesity. The intronic microRNAs miR-33a and miR-33b, located within the genes encoding sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1, respectively, are transcribed in concert with their host genes and function alongside them to regulate cholesterol, fatty acid, and glucose metabolism. SREBP-1 is highly expressed in mature WAT and plays a critical role in promotingin vitroadipocyte differentiation. It is unknown whether miR-33b is induced during or involved in adipogenesis. This is in part due to loss of miR-33b in rodents, precludingin vivoassessment of the impact of miR-33b using standard mouse models. This work demonstrates that miR-33b is highly induced upon differentiation of human preadipocytes, along withSREBP-1. We further report that miR-33b is an important regulator of adipogenesis, as inhibition of miR-33b enhanced lipid droplet accumulation. Conversely, overexpression of miR-33b impaired preadipocyte proliferation and reduced lipid droplet formation and the induction of peroxisome proliferator-activated receptor γ (PPARγ) target genes during differentiation. These effects may be mediated by targeting of HMGA2, cyclin-dependent kinase 6 (CDK6), and other predicted miR-33b targets. Together, these findings demonstrate a novel role of miR-33b in the regulation of adipocyte differentiation, with important implications for the development of obesity and metabolic disease.


Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 586-594 ◽  
Author(s):  
Cecile Vernochet ◽  
Kathryn E. Davis ◽  
Philipp E. Scherer ◽  
Stephen R. Farmer

Obesity leads to inflammation of white adipose tissue involving enhanced secretion of cytokines and acute-phase proteins in response in part to the accumulation of excess lipids in adipocytes. Haptoglobin is an acute-phase reactant secreted by white adipose tissue and induced by inflammatory cytokines such as TNFα. In this study, we investigated the mechanisms regulating haptoglobin expression in adipocytes. Peroxisome proliferator-activated receptor (PPAR)-γ agonists such as thiazolidinediones (TZDs) as well as non-TZD ligands can repress in vitro and in vivo haptoglobin expression in adipocytes and also prevent its induction by TNFα. This action requires direct involvement of PPARγ in regulating haptoglobin gene transcription because mutation of critical amino acids within helix 7 of the ligand-binding domain of PPARγ prevents repression of the haptoglobin gene by the synthetic ligands. Chromatin immunoprecipitation analysis shows active binding of PPARγ to a distal region of the haptoglobin promoter, which contains putative PPARγ binding sites. Additionally, PPARγ induces transcription of a luciferase reporter gene when driven by the distal promoter region of the haptoglobin gene, and TZD treatment significantly reduces the extent of this induction. Furthermore, the mutated PPARγ is incapable of enhancing luciferase activity in these in vitro reporter gene assays. In contrast to other adipokines repressed by TZDs such as resistin and chemerin, repression of haptoglobin does not require either CCAAT/enhancer-binding protein C/EBPα or the corepressors C-terminal binding protein 1 or 2. These data are consistent with a model in which synthetic PPARγ ligands selectively activate PPARγ bound to the haptoglobin gene promoter to arrest haptoglobin gene transcription.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
KyeongJin Kim ◽  
Jin Ku Kang ◽  
Young Hoon Jung ◽  
Sang Bae Lee ◽  
Raffaela Rametta ◽  
...  

AbstractIncreased adiposity confers risk for systemic insulin resistance and type 2 diabetes (T2D), but mechanisms underlying this pathogenic inter-organ crosstalk are incompletely understood. We find PHLPP2 (PH domain and leucine rich repeat protein phosphatase 2), recently identified as the Akt Ser473 phosphatase, to be increased in adipocytes from obese mice. To identify the functional consequence of increased adipocyte PHLPP2 in obese mice, we generated adipocyte-specific PHLPP2 knockout (A-PHLPP2) mice. A-PHLPP2 mice show normal adiposity and glucose metabolism when fed a normal chow diet, but reduced adiposity and improved whole-body glucose tolerance as compared to Cre- controls with high-fat diet (HFD) feeding. Notably, HFD-fed A-PHLPP2 mice show increased HSL phosphorylation, leading to increased lipolysis in vitro and in vivo. Mobilized adipocyte fatty acids are oxidized, leading to increased peroxisome proliferator-activated receptor alpha (PPARα)-dependent adiponectin secretion, which in turn increases hepatic fatty acid oxidation to ameliorate obesity-induced fatty liver. Consistently, adipose PHLPP2 expression is negatively correlated with serum adiponectin levels in obese humans. Overall, these data implicate an adipocyte PHLPP2-HSL-PPARα signaling axis to regulate systemic glucose and lipid homeostasis, and suggest that excess adipocyte PHLPP2 explains decreased adiponectin secretion and downstream metabolic consequence in obesity.


Sign in / Sign up

Export Citation Format

Share Document