scholarly journals OAS-RNase L innate immune pathway mediates the cytotoxicity of a DNA-demethylating drug

2019 ◽  
Vol 116 (11) ◽  
pp. 5071-5076 ◽  
Author(s):  
Shuvojit Banerjee ◽  
Elona Gusho ◽  
Christina Gaughan ◽  
Beihua Dong ◽  
Xiaorong Gu ◽  
...  

Drugs that reverse epigenetic silencing, such as the DNA methyltransferase inhibitor (DNMTi) 5-azacytidine (AZA), have profound effects on transcription and tumor cell survival. AZA is an approved drug for myelodysplastic syndromes and acute myeloid leukemia, and is under investigation for different solid malignant tumors. AZA treatment generates self, double-stranded RNA (dsRNA), transcribed from hypomethylated repetitive elements. Self dsRNA accumulation in DNMTi-treated cells leads to type I IFN production and IFN-stimulated gene expression. Here we report that cell death in response to AZA treatment occurs through the 2′,5′-oligoadenylate synthetase (OAS)-RNase L pathway. OASs are IFN-induced enzymes that synthesize the RNase L activator 2-5A in response to dsRNA. Cells deficient in RNase L or OAS1 to 3 are highly resistant to AZA, as are wild-type cells treated with a small-molecule inhibitor of RNase L. A small-molecule inhibitor of c-Jun NH2-terminal kinases (JNKs) also antagonizes RNase L-dependent cell death in response to AZA, consistent with a role for JNK in RNase L-induced apoptosis. In contrast, the rates of AZA-induced and RNase L-dependent cell death were increased by transfection of 2-5A, by deficiencies in ADAR1 (which edits and destabilizes dsRNA), PDE12 or AKAP7 (which degrade 2-5A), or by ionizing radiation (which induces IFN-dependent signaling). Finally, OAS1 expression correlates with AZA sensitivity in the NCI-60 set of tumor cell lines, suggesting that the level of OAS1 can be a biomarker for predicting AZA sensitivity of tumor cells. These studies may eventually lead to pharmacologic strategies for regulating the antitumor activity and toxicity of AZA and related drugs.

2020 ◽  
Vol 117 (40) ◽  
pp. 24802-24812 ◽  
Author(s):  
Salima Daou ◽  
Manisha Talukdar ◽  
Jinle Tang ◽  
Beihua Dong ◽  
Shuvojit Banerjee ◽  
...  

The oligoadenylate synthetase (OAS)–RNase L system is an IFN-inducible antiviral pathway activated by viral infection. Viral double-stranded (ds) RNA activates OAS isoforms that synthesize the second messenger 2-5A, which binds and activates the pseudokinase-endoribonuclease RNase L. In cells, OAS activation is tamped down by ADAR1, an adenosine deaminase that destabilizes dsRNA. Mutation of ADAR1 is one cause of Aicardi-Goutières syndrome (AGS), an interferonopathy in children. ADAR1 deficiency in human cells can lead to RNase L activation and subsequent cell death. To evaluate RNase L as a possible therapeutic target for AGS, we sought to identify small-molecule inhibitors of RNase L. A 500-compound library of protein kinase inhibitors was screened for modulators of RNase L activity in vitro. We identified ellagic acid (EA) as a hit with 10-fold higher selectivity against RNase L compared with its nearest paralog, IRE1. SAR analysis identified valoneic acid dilactone (VAL) as a superior inhibitor of RNase L, with 100-fold selectivity over IRE1. Mechanism-of-action analysis indicated that EA and VAL do not bind to the pseudokinase domain of RNase L despite acting as ATP competitive inhibitors of the protein kinase CK2. VAL is nontoxic and functional in cells, although with a 1,000-fold decrease in potency, as measured by RNA cleavage activity in response to treatment with dsRNA activator or by rescue of cell lethality resulting from self dsRNA induced by ADAR1 deficiency. These studies lay the foundation for understanding novel modes of regulating RNase L function using small-molecule inhibitors and avenues of therapeutic potential.


2014 ◽  
Author(s):  
Ying Huang ◽  
Rachel Lee ◽  
Andy Chang ◽  
Jeffery Fan ◽  
Chantelle Labib ◽  
...  

2020 ◽  
Vol 181 ◽  
pp. 104854
Author(s):  
Kamal U. Saikh ◽  
Elaine M. Morazzani ◽  
Ashley E. Piper ◽  
Russell R. Bakken ◽  
Pamela J. Glass

2019 ◽  
Vol 5 (9) ◽  
pp. eaax2277 ◽  
Author(s):  
Lei Wang ◽  
Lixiao Zhang ◽  
Li Li ◽  
Jingsheng Jiang ◽  
Zhen Zheng ◽  
...  

Disrupting the interactions between Hsp90 and Cdc37 is emerging as an alternative and specific way to regulate the Hsp90 chaperone cycle in a manner not involving adenosine triphosphatase inhibition. Here, we identified DDO-5936 as a small-molecule inhibitor of the Hsp90-Cdc37 protein-protein interaction (PPI) in colorectal cancer. DDO-5936 disrupted the Hsp90-Cdc37 PPI both in vitro and in vivo via binding to a previously unknown site on Hsp90 involving Glu47, one of the binding determinants for the Hsp90-Cdc37 PPI, leading to selective down-regulation of Hsp90 kinase clients in HCT116 cells. In addition, inhibition of Hsp90-Cdc37 complex formation by DDO-5936 resulted in a remarkable cyclin-dependent kinase 4 decrease and consequent inhibition of cell proliferation through Cdc37-dependent cell cycle arrest. Together, our results demonstrated DDO-5936 as an identified specific small-molecule inhibitor of the Hsp90-Cdc37 PPI that could be used to comprehensively investigate alternative approaches targeting Hsp90 chaperone cycles for cancer therapy.


PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e90748 ◽  
Author(s):  
Jijun Hao ◽  
Rachel Lee ◽  
Andy Chang ◽  
Jeffery Fan ◽  
Chantelle Labib ◽  
...  

2017 ◽  
Vol 24 (4) ◽  
pp. 493-506.e5 ◽  
Author(s):  
Xin Niu ◽  
Hetal Brahmbhatt ◽  
Philipp Mergenthaler ◽  
Zhi Zhang ◽  
Jing Sang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document