scholarly journals Trilobite evolutionary rates constrain the duration of the Cambrian explosion

2019 ◽  
Vol 116 (10) ◽  
pp. 4394-4399 ◽  
Author(s):  
John R. Paterson ◽  
Gregory D. Edgecombe ◽  
Michael S. Y. Lee

Trilobites are often considered exemplary for understanding the Cambrian explosion of animal life, due to their unsurpassed diversity and abundance. These biomineralized arthropods appear abruptly in the fossil record with an established diversity, phylogenetic disparity, and provincialism at the beginning of Cambrian Series 2 (∼521 Ma), suggesting a protracted but cryptic earlier history that possibly extends into the Precambrian. However, recent analyses indicate elevated rates of phenotypic and genomic evolution for arthropods during the early Cambrian, thereby shortening the phylogenetic fuse. Furthermore, comparatively little research has been devoted to understanding the duration of the Cambrian explosion, after which normal Phanerozoic evolutionary rates were established. We test these hypotheses by applying Bayesian tip-dating methods to a comprehensive dataset of Cambrian trilobites. We show that trilobites have a Cambrian origin, as supported by the trace fossil record and molecular clocks. Surprisingly, they exhibit constant evolutionary rates across the entire Cambrian, for all aspects of the preserved phenotype: discrete, meristic, and continuous morphological traits. Our data therefore provide robust, quantitative evidence that by the time the typical Cambrian fossil record begins (∼521 Ma), the Cambrian explosion had already largely concluded. This suggests that a modern-style marine biosphere had rapidly emerged during the latest Ediacaran and earliest Cambrian (∼20 million years), followed by broad-scale evolutionary stasis throughout the remainder of the Cambrian.

2020 ◽  
Vol 10 (4) ◽  
pp. 20190110 ◽  
Author(s):  
Graham E. Budd ◽  
Richard P. Mann

Important evolutionary events such as the Cambrian Explosion have inspired many attempts at explanation: why do they happen when they do? What shapes them, and why do they eventually come to an end? However, much less attention has been paid to the idea of a ‘null hypothesis’—that certain features of such diversifications arise simply through their statistical structure. Such statistical features also appear to influence our perception of the timing of these events. Here, we show in particular that study of unusually large clades leads to systematic overestimates of clade ages from some types of molecular clocks, and that the size of this effect may be enough to account for the puzzling mismatches seen between these molecular clocks and the fossil record. Our analysis of the fossil record of the late Ediacaran to Cambrian suggests that it is likely to be recording a true evolutionary radiation of the bilaterians at this time, and that explanations involving various sorts of cryptic origins for the bilaterians do not seem to be necessary.


2019 ◽  
Author(s):  
Graham Budd ◽  
Richard P. Mann

Important evolutionary events such as the Cambrian Explosion have inspired many attempts at explanation: why do they happen when they do? What shapes them, and why do they eventually come to an end? However, much less attention has been paid to the idea of a “null hypothesis” – that certain features of such diversifications arise simply through their statistical structure. Looking back from our own perspective to the origins of large groups such as the arthropods, or even the animals themselves, will expose features that look causal but are in fact inevitable. Here we review these features with particular regard to the Cambrian explosion. We conclude that the fossil record of the late Ediacaran to Cambrian is very likely to be recording a true evolutionary radiation at this time; and show how the unusually rapid nature of this event leads to characteristic over-estimation of its time of origin by molecular clock methods - an artefact that is likely to apply to other unusually fast radiations too.


Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 851-859 ◽  
Author(s):  
J.W. Valentine ◽  
D. Jablonski ◽  
D.H. Erwin

The Cambrian explosion is named for the geologically sudden appearance of numerous metazoan body plans (many of living phyla) between about 530 and 520 million years ago, only 1.7% of the duration of the fossil record of animals. Earlier indications of metazoans are found in the Neoproterozic; minute trails suggesting bilaterian activity date from about 600 million years ago. Larger and more elaborate fossil burrows appear near 543 million years ago, the beginning of the Cambrian Period. Evidence of metazoan activity in both trace and body fossils then increased during the 13 million years leading to the explosion. All living phyla may have originated by the end of the explosion. Molecular divergences among lineages leading to phyla record speciation events that have been earlier than the origins of the new body plans, which can arise many tens of millions of years after an initial branching. Various attempts to date those branchings by using molecular clocks have disagreed widely. While the timing of the evolution of the developmental systems of living metazoan body plans is still uncertain, the distribution of Hox and other developmental control genes among metazoans indicates that an extensive patterning system was in place prior to the Cambrian. However, it is likely that much genomic repatterning occurred during the Early Cambrian, involving both key control genes and regulators within their downstream cascades, as novel body plans evolved.


2006 ◽  
Vol 361 (1470) ◽  
pp. 1069-1083 ◽  
Author(s):  
Simon Conway Morris

The Cambrian ‘explosion’ is widely regarded as one of the fulcrum points in the history of life, yet its origins and causes remain deeply controversial. New data from the fossil record, especially of Burgess Shale-type Lagerstätten, indicate, however, that the assembly of bodyplans is not only largely a Cambrian phenomenon, but can already be documented in fair detail. This speaks against a much more ancient origin of the metazoans, and current work is doing much to reconcile the apparent discrepancies between the fossil record, including the Ediacaran assemblages of latest Neoproterozoic age and molecular ‘clocks’. Hypotheses to explain the Cambrian ‘explosion’ continue to be generated, but the recurrent confusion of cause and effect suggests that the wrong sort of question is being asked. Here I propose that despite its step-like function this evolutionary event is the inevitable consequence of Earth and biospheric change.


2015 ◽  
Vol 370 (1684) ◽  
pp. 20150046 ◽  
Author(s):  
Gregory A. Wray

The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation.


2021 ◽  
pp. 1-15
Author(s):  
Thomas M. Cullen ◽  
Lindsay Zanno ◽  
Derek W. Larson ◽  
Erinn Todd ◽  
Philip J. Currie ◽  
...  

The Dinosaur Park Formation (DPF) of Alberta, Canada, has produced one of the most diverse dinosaur faunas, with the record favouring large-bodied taxa, in terms of number and completeness of skeletons. Although small theropods are well documented in the assemblage, taxonomic assessments are frequently based on isolated, fragmentary skeletal elements. Here we reassess DPF theropod biodiversity using morphological comparisons, high-resolution biostratigraphy, and morphometric analyses, with a focus on specimens/taxa originally described from isolated material. In addition to clarifying taxic diversity, we test whether DPF theropods preserve faunal zonation/turnover patterns similar to those previously documented for megaherbivores. Frontal bones referred to a therizinosaur (cf. Erlikosaurus), representing among the only skeletal record of the group from the Campanian–Maastrichtian (83–66 Ma) fossil record of North America, plot most closely to troodontids in morphospace, distinct from non-DPF therizinosaurs, a placement supported by a suite of troodontid anatomical frontal characters. Postcranial material referred to cf. Erlikosaurus in North America is also reviewed and found most similar in morphology to caenagnathids, rather than therizinosaurs. Among troodontids, we document considerable morphospace and biostratigraphic overlap between Stenonychosaurus and the recently described Latenivenatrix, as well as a variable distribution of putatively autapomorphic characters, calling the validity of the latter taxon into question. Biostratigraphically, there are no broad-scale patterns of faunal zonation similar to those previously documented in ornithischians from the DPF, with many theropods ranging throughout much of the formation and overlapping extensively, possibly reflecting a lack of sensitivity to environmental changes, or other cryptic ecological or evolutionary factors.


Paleobiology ◽  
1996 ◽  
Vol 22 (2) ◽  
pp. 121-140 ◽  
Author(s):  
Mike Foote ◽  
David M. Raup

The incompleteness of the fossil record hinders the inference of evolutionary rates and patterns. Here, we derive relationships among true taxonomic durations, preservation probability, and observed taxonomic ranges. We use these relationships to estimate original distributions of taxonomic durations, preservation probability, and completeness (proportion of taxa preserved), given only the observed ranges. No data on occurrences within the ranges of taxa are required. When preservation is random and the original distribution of durations is exponential, the inference of durations, preservability, and completeness is exact. However, reasonable approximations are possible given non-exponential duration distributions and temporal and taxonomic variation in preservability. Thus, the approaches we describe have great potential in studies of taphonomy, evolutionary rates and patterns, and genealogy.Analyses of Upper Cambrian-Lower Ordovician trilobite species, Paleozoic crinoid genera, Jurassic bivalve species, and Cenozoic mammal species yield the following results: (1) The preservation probability inferred from stratigraphic ranges alone agrees with that inferred from the analysis of stratigraphic gaps when data on the latter are available. (2) Whereas median durations based on simple tabulations of observed ranges are biased by stratigraphic resolution, our estimates of median duration, extinction rate, and completeness are not biased. (3) The shorter geologic ranges of mammalian species relative to those of bivalves cannot be attributed to a difference in preservation potential. However, we cannot rule out the contribution of taxonomic practice to this difference. (4) In the groups studied, completeness (proportion of species [trilobites, bivalves, mammals] or genera [crinoids] preserved) ranges from 60% to 90%. The higher estimates of completeness at smaller geographic scales support previous suggestions that the incompleteness of the fossil record reflects loss of fossiliferous rock more than failure of species to enter the fossil record in the first place.


2018 ◽  
Vol 115 (21) ◽  
pp. 5323-5331 ◽  
Author(s):  
Allison C. Daley ◽  
Jonathan B. Antcliffe ◽  
Harriet B. Drage ◽  
Stephen Pates

Euarthropoda is one of the best-preserved fossil animal groups and has been the most diverse animal phylum for over 500 million years. Fossil Konservat-Lagerstätten, such as Burgess Shale-type deposits (BSTs), show the evolution of the euarthropod stem lineage during the Cambrian from 518 million years ago (Ma). The stem lineage includes nonbiomineralized groups, such as Radiodonta (e.g., Anomalocaris) that provide insight into the step-by-step construction of euarthropod morphology, including the exoskeleton, biramous limbs, segmentation, and cephalic structures. Trilobites are crown group euarthropods that appear in the fossil record at 521 Ma, before the stem lineage fossils, implying a ghost lineage that needs to be constrained. These constraints come from the trace fossil record, which show the first evidence for total group Euarthropoda (e.g., Cruziana, Rusophycus) at around 537 Ma. A deep Precambrian root to the euarthropod evolutionary lineage is disproven by a comparison of Ediacaran and Cambrian lagerstätten. BSTs from the latest Ediacaran Period (e.g., Miaohe biota, 550 Ma) are abundantly fossiliferous with algae but completely lack animals, which are also missing from other Ediacaran windows, such as phosphate deposits (e.g., Doushantuo, 560 Ma). This constrains the appearance of the euarthropod stem lineage to no older than 550 Ma. While each of the major types of fossil evidence (BSTs, trace fossils, and biomineralized preservation) have their limitations and are incomplete in different ways, when taken together they allow a coherent picture to emerge of the origin and subsequent radiation of total group Euarthropoda during the Cambrian.


2019 ◽  
Vol 187 (3) ◽  
pp. 829-928 ◽  
Author(s):  
Andrea Villa ◽  
Massimo Delfino

Abstract The fossil record provides evidence of a long evolutionary history of European lizards. Since fossil lizards are regularly represented by bone remains, the knowledge of the origins of extant taxa and their distribution in time and space is hindered by the fact that their comparative osteology is not yet completely and adequately known. In spite of a rising interest in this topic since the end of the 20th century, a gap in our knowledge is still evident. We here report the first broad-scale comparative osteological analysis of the skulls of extant European lizards, highlighting significant differences that can be used in identification. This comparative study, including as many European species as possible, leads to the creation of a detailed diagnostic key for each single bone. Also, our data significantly improve the recognizability of extant European non-snake squamates, with 54% of the current diversity to be recognized based on the new results contra the previously estimated 31%. This recognizability is expected to further increase in the future, with new studies focusing on species that are either missing or poorly represented here, or applying promising advanced methodologies.


Sign in / Sign up

Export Citation Format

Share Document