scholarly journals Tree clusters in savannas result from islands of soil moisture

2019 ◽  
Vol 116 (14) ◽  
pp. 6679-6683 ◽  
Author(s):  
Ignacio Rodriguez-Iturbe ◽  
Zijuan Chen ◽  
Ann Carla Staver ◽  
Simon Asher Levin

Tree clusters in savannas are commonly found in sizes that follow power laws with well-established exponents. We show that their size distributions could result from the space–time probabilistic structure of soil moisture, estimated over the range of rainfall observed in semiarid savannas; patterns of soil moisture display islands whose size, for moisture thresholds above the mean, follows power laws. These islands are the regions where trees are expected to exist and they have a fractal structure whose perimeter–area relationship is the same as observed in field data for the clustering of trees. When the impact of fire and herbivores is accounted for, as acting through the perimeter of the tree clusters, the power law of the soil moisture islands is transformed into a power law with the same exponents observed in the tree cluster data.

2019 ◽  
Vol 488 (2) ◽  
pp. 2190-2201 ◽  
Author(s):  
X J Liu ◽  
M J Keith ◽  
C G Bassa ◽  
B W Stappers

Abstract We investigate the impact of noise processes on high-precision pulsar timing. Our analysis focuses on the measurability of the second spin frequency derivative $\ddot{\nu }$. This $\ddot{\nu }$ can be induced by several factors including the radial velocity of a pulsar. We use Bayesian methods to model the pulsar times-of-arrival in the presence of red timing noise and dispersion measure variations, modelling the noise processes as power laws. Using simulated times-of-arrival that both include red noise, dispersion measure variations, and non-zero $\ddot{\nu }$ values, we find that we are able to recover the injected $\ddot{\nu }$, even when the noise model used to inject and recover the input parameters are different. Using simulations, we show that the measurement uncertainty on $\ddot{\nu }$ decreases with the timing baseline T as Tγ, where γ = −7/2 + α/2 for power-law noise models with shallow power-law indices α (0 < α < 4). For steep power-law indices (α > 8), the measurement uncertainty reduces with T−1/2. We applied this method to times-of-arrival from the European Pulsar Timing Array and the Parkes Pulsar Timing Array and determined $\ddot{\nu }$ probability density functions for 49  millisecond pulsars. We find a statistically significant $\ddot{\nu }$ value for PSR B1937+21 and consider possible options for its origin. Significant (95 per cent C.L.) values for $\ddot{\nu }$ are also measured for PSRs J0621+1002 and J1022+1001, thus future studies should consider including it in their ephemerides. For binary pulsars with small orbital eccentricities, such as PSR J1909−3744, extended ELL1 models should be used to overcome computational issues. The impacts of our results on the detection of gravitational waves are also discussed.


1998 ◽  
Vol 01 (02n03) ◽  
pp. 203-220 ◽  
Author(s):  
Ricard V. Solé ◽  
David Alonso

Rainforests are legendary because their extreme species richness. In the richest rain forests every second tree on a hectare is a differnt species. As a consequence, most species are rare. Using field data from studies in dfiferent parts of the world, we show that species-rich plots often display a distribution of number of species Ns(I) represented by I individuals with a power-law shape Ns(I)∝I-β with β≈1.5. Power laws are characteristic (but not exclusive) of systems poised close to critical points and this is supported by the analysis of the gap distribution over space in the Barro Colorado Island forest, which has been shown to be fractal. Here we propose a new model of rainforest dynamics which is able to account for a wide set of observations, strongly suggesting that indeed rainforests would be organized close to instability points, showing strongly path-dependent dynamics.


2021 ◽  
Author(s):  
Pedro Arboleda ◽  
Agnès Ducharne ◽  
Frédérique Cheruy

&lt;p&gt;Groundwater (GW) constitutes by far the largest volume of liquid freshwater on Earth. The most active part is soil moisture (SM), which plays a key role on land/atmosphere interactions. But GW is often stored in deep reservoirs below the soil as well, where it presents slow horizontal movements along hillslopes toward the river network. They end up forming baseflow with well-known buffering effects on streamflow variability, but they also contribute to sustain higher SM values, especially in the lowland areas surrounding streams, which are among the most frequent wetlands. &amp;#160;As a result, GW-SM interactions may influence the climate system, in the past but also in the future, with a potential to alleviate anthropogenic warming, at least regionally, owing to enhanced evapotranspiration rate (ET) or higher soil thermal inertia for instance.&lt;br&gt;To assess where, when, and how much GW-SM interaction affects the climate change trajectories, we use coupled land-atmosphere simulations with the IPSL-CM6 climate model, developed by the Institut Pierre Simon Laplace for CMIP6. &amp;#160;We contrast the results of two long-term simulations (1979-2100), which share the same sea surface temperature and radiative forcing, using the SSP5-8.5 scenario (i.e. the most pessimistic) for 2015-2100. The two simulations differ by their configuration of the land surface scheme ORCHIDEE: in the default version, there is no GW-SM interaction, while this interaction is permitted in the second simulation, within a so-called lowland fraction, fed by surface and GW runoff from the rest of the grid-cell. For simplicity, this lowland fraction is set constant over time, but varies across grid-cells based on a recently designed global scale wetland map.&amp;#160;&lt;br&gt;Within this framework, we analyse the impact of the GW-SM interaction on climate change trajectories, focusing on the response of evapotranspiration rates and near-surface air temperatures. The GW-SM interaction can modulate the response to climate change by amplifying, attenuating, or even inverting the climate change trend. Based on yearly mean values over land, we find that the GW-SM interaction amplifies the response of evapotranspiration to climate change, as the mean evapotranspiration rate increases 50% faster over 1980 - 2100 in the simulation with GW-SM interaction. In contrast, the mean warming over land is 1% weaker, shifting from 6.4 to 6.3 &amp;#176;C/100 years; thus attenuated, if the GW-SM interaction is accounted for. In both cases, these values hide important differences across climates and seasons, with mitigation or amplification for both variables, indicating the need for regional and seasonal assessment. We will also further explore how GW-SM interaction impacts the future evolution of heatwaves, in terms of duration and frequency.&amp;#160;&lt;/p&gt;


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


Author(s):  
Julie L. Wambaugh ◽  
Lydia Kallhoff ◽  
Christina Nessler

Purpose This study was designed to examine the association of dosage and effects of Sound Production Treatment (SPT) for acquired apraxia of speech. Method Treatment logs and probe data from 20 speakers with apraxia of speech and aphasia were submitted to a retrospective analysis. The number of treatment sessions and teaching episodes was examined relative to (a) change in articulation accuracy above baseline performance, (b) mastery of production, and (c) maintenance. The impact of practice schedule (SPT-Blocked vs. SPT-Random) was also examined. Results The average number of treatment sessions conducted prior to change was 5.4 for SPT-Blocked and 3.9 for SPT-Random. The mean number of teaching episodes preceding change was 334 for SPT-Blocked and 179 for SPT-Random. Mastery occurred within an average of 13.7 sessions (1,252 teaching episodes) and 12.4 sessions (1,082 teaching episodes) for SPT-Blocked and SPT-Random, respectively. Comparisons of dosage metric values across practice schedules did not reveal substantial differences. Significant negative correlations were found between follow-up probe performance and the dosage metrics. Conclusions Only a few treatment sessions were needed to achieve initial positive changes in articulation, with mastery occurring within 12–14 sessions for the majority of participants. Earlier occurrence of change or mastery was associated with better follow-up performance. Supplemental Material https://doi.org/10.23641/asha.12592190


Author(s):  
Guilherme Borzacchiello ◽  
Carl Albrecht ◽  
Fabricio N Correa ◽  
Breno Jacob ◽  
Guilherme da Silva Leal

2013 ◽  
Vol 12 (2) ◽  
pp. 119-125

The present study concerns the impact of a change in the rainfall regime on surface and groundwater resources in an experimental watershed. The research is conducted in a gauged mountainous watershed (15.18 km2) that is located on the eastern side of Penteli Mountain, in the prefecture of Attica, Greece and the study period concerns the years from 2003 to 2008. The decrease in the annual rainfall depth during the last two hydrological years 2006-2007, 2007-2008 is 10% and 35%, respectively, in relation to the average of the previous years. In addition, the monthly distribution of rainfall is characterized by a distinct decrease in winter rainfall volume. The field measurements show that this change in rainfall conditions has a direct impact on the surface runoff of the watershed, as well as on the groundwater reserves. The mean annual runoff in the last two hydrological years has decreased by 56% and 75% in relation to the average of the previous years. Moreover, the groundwater level follows a declining trend and has dropped significantly in the last two years.


2018 ◽  
Author(s):  
Natalia Banasik ◽  
Dariusz Jemielniak ◽  
Wojciech P?dzich

BACKGROUND There have been mixed results of the studies checking whether prayers do actually extend the life duration of the people prayed for. Most studies on the topic included a small number of prayers and most of them focused on people already struggling with a medical condition. Intercessory prayer’s influence on health is of scholarly interest, yet it is unclear if its effect may be dependent on the number of prayers for a named individual received per annum. OBJECTIVE We sought to examine if there is a noticeable increased longevity effect of intercessory prayer for a named individual’s well-being, if he receives a very high number of prayers per annum for an extended period. METHODS We retrieved and conducted a statistical analysis of the data about the length of life for 857 Roman Catholic bishops, 500 Catholic priests, and 3038 male academics from the US, France, Italy, Poland, Brazil, and Mexico. We obtained information for these individuals who died between 1988 and 2018 from Wikidata, and conducted an observational cohort study. Bishops were chosen for the study, as they receive millions of individual prayers for well being, according to conservative estimates. RESULTS There was a main effect for occupation F(2, 4391) = 4.07, p = .017, ηp 2 = .002, with pairwise comparisons indicating significant differences between the mean life duration of bishops (M=30489) and of priests (M=29894), but none between the academic teachers (M=30147) and either of the other groups. A comparison analysis between bishops from the largest and the smallest dioceses showed no significant difference t(67.31)=1.61, p = .11. Our main outcome measure is covariance of the mean length of life in each of the categories: bishops, priests, academic teachers, controlled for nationality. CONCLUSIONS The first analysis proved that bishops live longer than priests, but due to a marginal effect size this result should be treated with caution. No difference was found between the mean length of life of bishops from the largest and the smallest dioceses. We found no difference between bishops and male academics. These results show that the impact of intercessory prayers on longevity is not observable.


Author(s):  
Stefan Thurner ◽  
Rudolf Hanel ◽  
Peter Klimekl

Scaling appears practically everywhere in science; it basically quantifies how the properties or shapes of an object change with the scale of the object. Scaling laws are always associated with power laws. The scaling object can be a function, a structure, a physical law, or a distribution function that describes the statistics of a system or a temporal process. We focus on scaling laws that appear in the statistical description of stochastic complex systems, where scaling appears in the distribution functions of observable quantities of dynamical systems or processes. The distribution functions exhibit power laws, approximate power laws, or fat-tailed distributions. Understanding their origin and how power law exponents can be related to the particular nature of a system, is one of the aims of the book.We comment on fitting power laws.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hanji He ◽  
Guangming Deng

We extend the mean empirical likelihood inference for response mean with data missing at random. The empirical likelihood ratio confidence regions are poor when the response is missing at random, especially when the covariate is high-dimensional and the sample size is small. Hence, we develop three bias-corrected mean empirical likelihood approaches to obtain efficient inference for response mean. As to three bias-corrected estimating equations, we get a new set by producing a pairwise-mean dataset. The method can increase the size of the sample for estimation and reduce the impact of the dimensional curse. Consistency and asymptotic normality of the maximum mean empirical likelihood estimators are established. The finite sample performance of the proposed estimators is presented through simulation, and an application to the Boston Housing dataset is shown.


Sign in / Sign up

Export Citation Format

Share Document